• Title/Summary/Keyword: out-of-plane fields

Search Result 107, Processing Time 0.023 seconds

An Experimental Study on the Three Dimensional Turbulent Flow Characteristics of Swirl Burner for Gas Furnace (가스난방기용 스월버너의 3차원 난류유동 특성에 관한 실험적 연구)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.225-234
    • /
    • 2001
  • This paper represents the vector fields, three dimensional mean velocities, the turbulent intensities, the turbulent kinetic energy, and the Reynolds shear stresses in the X-Y plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rates 350 and 450ℓ/min respectively, which are equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of subsonic wind tunnel. The vector plot shows that the maximum axial mean velocity component exists in the narrow slits situated radially on the edge of gas swirl burner, for that reason, there is some entrainment phenomena of ambient air in the outer region of burner. Moreover, mean velocities in the initial region are largely distributed near the outer region of burner at Y/R≒0.97, but they diffuse and develop into the center flow region of burner according to the increase of axial distance. The turbulent intensities and the turbulent kinetic energy due to large inclination of mean velocity and swirl effect show that the maximum value in the initial region of burner is formed in the narrow slits situated radially on the edge of gas swirl burner and large values are mainly formed in the entire region of burner after X/R=2.4358, hence, the combustion reaction is anticipated to occur actively near this region. And the Reynolds shear stresses are also largely distributed from slite to vanes of gas swirl burner in the intial region, but their values largely disappear after X/R=3.2052.

Geometry-to-BIM Mapping Rule Definition for Building Plane BIM object (건축물 평면 형상에 대한 형상-to-BIM 맵핑 규칙 정의)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.236-242
    • /
    • 2019
  • Recently, scanning projects have been carried out in various construction and construction fields for maintenance purposes. The point cloud generated by the scan results is composed of a number of points representing the object to be scanned. The process of extracting the necessary information, including dimensions, from such scan data is called paradox. The reverse engineering process of modeling a point cloud as BIM involves considerable manual work. Owing to the time-consuming reverse engineering nature of the work, the costs increase exponentially when rework requests are made, such as design changes. Reverse engineering automation technology can help improve these problems. On the other hand, the reverse design product is variable depending on the use, and the kind and detail level of the product may be different. This paper proposes the G2BM (Geometry-to-BIM mapping) rule definition method that automatically maps a BIM object from a primitive geometry to a BIM object. G2BM proposes a process definition and a customization method for reverse engineering BIM objects that consider the use case variability.

Automatic Extraction of Roof Components from LiDAR Data Based on Octree Segmentation (LiDAR 데이터를 이용한 옥트리 분할 기반의 지붕요소 자동추출)

  • Song, Nak-Hyeon;Cho, Hong-Beom;Cho, Woo-Sug;Shin, Sung-Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The 3D building modeling is one of crucial components in building 3D geospatial information. The existing methods for 3D building modeling depend mainly on manual photogrammetric processes by stereoplotter compiler, which indeed take great amount of time and efforts. In addition, some automatic methods that were proposed in research papers and experimental trials have limitations of describing the details of buildings with lack of geometric accuracy. It is essential in automatic fashion that the boundary and shape of buildings should be drawn effortlessly by a sophisticated algorithm. In recent years, airborne LiDAR data representing earth surface in 3D has been utilized in many different fields. However, it is still in technical difficulties for clean and correct boundary extraction without human intervention. The usage of airborne LiDAR data will be much feasible to reconstruct the roof tops of buildings whose boundary lines could be taken out from existing digital maps. The paper proposed a method to reconstruct the roof tops of buildings using airborne LiDAR data with building boundary lines from digital map. The primary process is to perform octree-based segmentation to airborne LiDAR data recursively in 3D space till there are no more airborne LiDAR points to be segmented. Once the octree-based segmentation has been completed, each segmented patch is thereafter merged based on geometric spatial characteristics. The experimental results showed that the proposed method were capable of extracting various building roof components such as plane, gable, polyhedric and curved surface.

A Numerical Study of the Flow Field in the Combustion Chamber of the I.C Engine with Offset Valve (편심 밸브를 갖는 내연기관의 연소실 내부 유동장에 대한 수치적 연구)

  • 양희천;최영기;유홍선;고상근;허선무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1552-1565
    • /
    • 1992
  • Three dimensional numerical calculations were carried out for two different combustion chambers with the offset valve in order to investigate the swirl and the squish effects on the flow fields. The modified K-.epsilon. turbulence model considering the change of the density under the condition of the rapid compression and expansion of the pistion was used. During the compression process, it was found that the squish flow which controls the subsequent combustion process was produced due to the piston bowl in the bowl piston type combustion chambers but not for the flat piston type. The swirl velocity close to the solid body rotation was maintained in the flat piston type combustion chambers, but for the bowl piston type a resulting from the change of the solid body rotation was generated in the radial-circumferential plane. For the swirl ratio effect, as the swirl ratio increases, it was found that a large and strong vortex was generated in the radial-circumferential plane of bowl piston type combustion chambers because of the strong inward flows from the combustion chamber wall. These computational results were compared with the results of LDA measurement.

Mixed Mode Analysis using Two-step Extension Based VCCT in an Inclined Center Crack Repaired by Composite Patching (복합재료 팻칭에 의한 중앙경사균열에서 2단계 확장 가상균열닫힘법을 사용한 혼합모우드해석)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.11-18
    • /
    • 2012
  • This paper deals with the numerical determination of the stress intensity factors of cracked aluminum plates under the mixed mode of $K_I$ and $K_{II}$ in glass-epoxy fiber reinforced composites. For the stress intensity factors, two different models are reviewed such as VCCT and two-step extension method. The p-convergent partial layerwise model is adopted to determine the fracture parameters in terms of energy release rates and stress intensity factors. The p-convergent approach is based on the concept of subparametric element. In assumed displacement field, strain-displacement relations and 3-D constitutive equations of a layer are obtained by combination of 2-D and 1-D higher-order shape functions. In the elements, Lobatto shape functions and Gauss-Lobatto technique are employed to interpolate displacement fields and to implement numerical quadrature. Using the models and techniques considered, effects of composite laminate configuration according to inclined angles and adhesive properties on the performance of bonded composite patch are investigated. In addition to these, the out-of-plane bending effect has been investigated across the thickness of patch repaired laminate plates due to the change of neutral axis. The present model provides accuracy and simplicity in terms of stress intensity factors, stress distribution, number of degrees of freedom, and energy release rates as compared with previous works in literatures.

A Study on Soviet Constructive Fashion in 1920s (1920년대 소비에트 구성주의 패션에 관한 연구)

  • 조윤경;금기숙
    • Journal of the Korean Society of Costume
    • /
    • v.36
    • /
    • pp.183-203
    • /
    • 1998
  • The wave of Avant-garde swept away all in the unique social background so called 'October Revolution' and the early 1900 Russian society which was able to absorb and accept anything. The Russian avant-garde has been affected by the Cubism and the Futurism those had peculiarly appeared in the early twentieth century, spreaded out to three spheres: the Suprematism, the Rayonism and the Constructivism. The Russian Constructivism has appeared in this background, concretely and ideally ex-pressed the ideology of the revolution into the artistic form and made an huge influence to the whole Russian society. The Constructivist like Tatlin, naum Gabo, Pevaner, Rodchenko, Stepanova, Popova and Exter gave great effect on the Soviet Constructive fashion design in 1920's after the Revolution. The Soviet costume in 1920s hold in common the characteristicss of the Constructive graphic as it is, geometrical and abstractive form, energetic and motility. In fashion design, these graphic qualities have been showed as the application of geometrical form and architectural image, physical distortion and transformation. And in textile design, the simple, dynamical presentation has been appeared. We can classify the Soviet costume at this time into three occasions. The first term is from late 1910 th mid 1920, and it is altered from folk costume design to modern one. With Lamanova as the first on the list, using the folk mitif, the Constructive expression of simple form has been gradually revealed in design. Designers like Makarova, Pribylskaia and Mukhina produced the plane, simple chemise style with the decoration of the Russian traditional motif. From early to late 1920 is the second term, and it is at the pick of the most active processing of the Constructive design. Not only at the costume in daily life but also at the theatrical costume and textile, the con-structive design has been represented all avail-able fields. Many Constructivists including Stepanova, Popova, Exter and Rodchenko took part in the textile design and costume design so as to evlvo their aesthetic concept. The third term is from late 1920 to early 1930. The socialistic realism has dominated over the whole culture and art, the revolutionary dynamic motif has been presented also in textile design. The formative features of Soviet Constructive fashion design are; silhouette, from, motif, color and fabric. The first, the silhouette : a straight rectangular silhouetted has been expressed through the whole period and a volumed one with distorted human body shape has introduced in the theatrical costume design. The second, the form: many lengthened rectangular forms have been made at beginnings, but to the middle period, geometrical, architectural forms have been more showed and there are energy and movement in design. At the last period, only a partial feature-division has been seen. The third, the motif; no pattern or ethnic motif has been partly used at beginnings, a figure like circle, tri-angle has gradually appeared in textile design. At latter period, a real-existent motif like an airplane has been represented with graphing and simplicity. The fourth, the color ; because of insufficient dyeing, neutral color like black or grey color has been mainly covered, but after middle term, a primary color or pastel tone has been seen, contrast of the fabric; without much development of textile industry after the Revolution, thick and durable fabrics have been the main stream, but as time had going to the last period, fabrics such as linen, cotton, velvet and silk have been varously choesn. At the theatrical costume, new materials like plastics and metals that were able to accentuate the form. The pursuit of popularity, simplicity and functionalism that the basic concept of Constructive fashion is one of the "beauty" which has been searching in modern fashion. And now we can appreciate how innovative and epochal this Soviet Constructive fashion movement was.ement was.

  • PDF

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.