• 제목/요약/키워드: out-of-plane buckling

검색결과 105건 처리시간 0.019초

Chain stitch 다축경편물의 전단 및 성형 거동에 관한 연구 (Study on the Shear and Forming Behavior of Chain Stitched Multi-axial Warp Knitted Fabric Preform)

  • 이지석;홍석진;유웅렬;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.107-110
    • /
    • 2005
  • In this study we investigated the shear and forming behavior of chain stitched multi-axial warp knitted fabric preform, so called non-crimp fabric (NCF). The picture frame test was performed to characterize the shear behavior of NCF and also provide material properties for the numerical simulation of its deformation behavior. The forming behavior of NCF with chain stitch were investigated using hemispherical forming tools. The experimental results show that processing conditions such as blank holder force (BHF) and preform shape are crucial to determining the forming behavior of NCF. For instance, an asymmetric formed shape, which is due to the stitches introduced to NCF, turns into a symmetric one as BHF increases. Furthermore the in-plane and out-of buckling (wrinkle), the severance of which were quantified using image processing method, decreases significantly as BHF increases.

  • PDF

감쇠효과(減衰效果)를 고려한 비보존력계(非保存力系)의 동적(動的) 후좌굴(後挫屈) 해석(解析) (The Dynamic Post-Buckling Analysis of the Non-Conservative System including Damping Effects)

  • 김문영;장승필
    • 대한토목학회논문집
    • /
    • 제10권3호
    • /
    • pp.67-75
    • /
    • 1990
  • 보존력 및 비보존력을 받는 평면뼈대 구조물의 동적 후좌굴거동을 추적하기 위하여 비보존력의 방향변화를 고려할 수 있는 기하적인 비선형 유한 요소해석 방법을 제시하였다. 보존력계와 비보존력계에 대하여 내적 및 외적감쇠효과를 고려하는 비선형 패트릭스 운동 방정식을 유도하고 Newmark 방법을 사용하여 수치적으로 직접 적분하였다. Post-divergence 및 Post-flutter 현상들응 보여주는 해석예제들을 통하여 내적 및 외적감쇠하중이 이러한 비선형 동적 후좌굴거동들에 미치는 영향들을 조사하였다.

  • PDF

Stability of a cylindrical shell with an oblique end

  • Hu, X.J.;Redekop, D.
    • Structural Engineering and Mechanics
    • /
    • 제19권1호
    • /
    • pp.43-53
    • /
    • 2005
  • The linearized buckling problem is considered for an isotropic clamped-clamped cylindrical shell with an oblique end. A theoretical solution based on the Budiansky shell theory is developed, and numerical results are determined using the differential quadrature method. In formulating the solutions, the surface of the shell is developed onto a plane, and the resulting irregular domain is then mapped, using blending functions, onto a square parent domain. The analysis is carried out in the parent domain. Convergence, validation, and parametric studies are conducted for a uniform external pressure loading. Results determined are compared with finite element results. The paper ends with an appropriate set of conclusions.

Strength and behaviour of reinforced SCC wall panels in one-way action

  • Ganesan, N.;Indiraa, P.V.;Prasad, S. Rajendra
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.1-18
    • /
    • 2010
  • A total of 28 wall panels were cast and tested under uniformly distributed axial load in one-way in-plane action to study the effect of slenderness ratio (SR) and aspect ratio (AR) on the ultimate load. Two concrete formulations, normal concrete (NC) and self compacting concrete (SCC), were used for the casting of wall panels. Out of 28 wall panels, 12 were made of NC and the remaining 16 panels were of SCC. All the 12 NC panels and 12 out of 16 SCC panels were used to study the influence of SR and the remaining 4 SCC panels were tested to study the effect of AR on the ultimate load. A brief review of studies available in literature on the strength and behaviour of reinforced concrete (RC) wall panels is presented. Load-deformation response was recorded and analyzed. The ultimate load of SCC wall panels decreases non-linearly with the increase in SR and decreases linearly with increasing values of AR. Based on this study a method is proposed to predict the ultimate load of reinforced SCC wall panels. The modified method includes the effect of SR, AR and concrete strength.

Wire-woven Bulk Kagome의 압축 특성 분석 (Analysis of Compressive Characteristics of Wire-woven Bulk Kagome)

  • 이병곤;최지은;강기주;전인수
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.70-76
    • /
    • 2008
  • Periodic cellular metals (PCMs) are actively being investigated because of their excellent specific strength and stiffness, and multi-functionality such as a heat disperse structure bearing external loading. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling and lower anisotropy than other truss PCMs. In this paper, the out-of-plane compressive responses of the WBK specimens have been measured, theoretically predicted and numerically analyzed. Three specimens of two-layered WBK are fabricated and tested for measuring the responses. The peak stress of compressive behavior and effective elastic modulus are predicted based on the equilibrium equation and elastic energy conservation. Moreover, the structure of the specimen is modeled using the commercial mesh generation code, PATRAN and the finite element analysis for the model under the compression is carried out using the commercial FE code, ABAQUS. Finally, the obtained results are compared with each other to analyze the compressive characteristics of Wire-woven Bulk Kagome (WBK).

Sine 파형 복부판을 갖는 I형 플레이트 거더의 비틂 및 뒴 상수 (Torsional and Warping Constants of I-shaped Plate Girders with a Sine Corrugated Web)

  • 김승준;전진수;원덕희;강영종
    • 대한토목학회논문집
    • /
    • 제32권6A호
    • /
    • pp.347-354
    • /
    • 2012
  • 본 연구에서는 Sine 파형 복부판을 갖는 I형 플레이트 거더의 비틂 상수와 �� 상수식을 제안한다. Sine 파형 복부판을 갖는 플레이트 거더는 일반적으로 기하학적 특성에 따라 높은 면외 방향 강성 및 전단강도, 비틂 강성을 갖는다. 특히, 플레이트 I형 거더의 횡-비틂 강도를 산정하는 데 있어서 부재 단면의 비틂 상수 및 �� 상수는 큰 영향을 미치는데, 종래의 수식으로는 Sine 파형 복부판의 이러한 단면상수를 합리적으로 산정하는 데 어려움이 있다. 따라서 본 연구에서는 Sine 파형 복부판의 기하학적 특성을 반영할 수 있는 새로운 제안식을 연구하였다. 쉘 요소를 사용한 I형 플레이트 거더의 순수 비틂 거동에 대한 유한요소해석결과를 통해 파형의 기하학적 특성에 따른 비틂 상수 변화를 분석하고 이를 회귀분석하여 수식을 제안하였다. 이후, 순수 비틂과 �� 비틂이 함께 존재하는 조건에서의 유한요소해석 결과를 통해 �� 상수 계산식을 제안하였다. 이 두 제안식은 단순 지지된 Sine 파형 복부판을 갖는 I형 플레이트 거더의 횡-비틂 좌굴해석 결과를 토대로 검증되었다. 본 연구에서 제안한 두 수식을 통해 Sine 파형 복부판을 갖는 I형 플레이트 거더의 중요한 두 단면 상수를 명확히 계산할 수 있고, 이를 통해 정확한 횡-비틂 좌굴 강도를 손쉽게 계산할 수 있다.

Tubular Web Reduced Beam Section (TW-RBS) connection, a numerical and experimental study and result comparison

  • Zahrai, Seyed M.;Mirghaderi, Seyed R.;Saleh, Aboozar
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.571-583
    • /
    • 2017
  • A kind of accordion-web RBS connection, "Tubular Web RBS (TW-RBS)" connection is proposed in this research. TW-RBS is made by replacing a part of web with a tube at the desirable location of the beam plastic hinge. This paper presents first a numerical study under cyclic load using ABAQUS finite element software. A test specimen is used for calibration and comparison of numerical results. Obtained results indicated that TW-RBS would reduce contribution of the beam web to the whole moment strength and creates a ductile fuse far from components of the beam-to-column connection. Besides, TW-RBS connection can increase story drift capacity up to 9% in the case of shallow beams which is much more than those stipulated by the current seismic codes. Furthermore, the tubular web like corrugated sheet can improve both the out-of-plane stiffness of the beam longitudinal axis and the flange stability condition due to the smaller width to thickness ratio of the beam flange in the plastic hinge region. Thus, the tubular web in the plastic hinge region improves lateral-torsional buckling stability of the beam as just local buckling of the beam flange at the center of the reduced section was observed during the tests. Also change of direction of strain in arc shape of the tubular web section is smaller than the accordion webs with sharp corners therefore the tubular web provides a better condition in terms of low-cycle fatigue than other accordion web with sharp corners.

단면절삭형 응력제한 장치의 개발에 관한 연구 (A Study on the Development of Force Limiting Devices of Cross-Section Cutting Types)

  • 김철환;채원탁
    • 한국강구조학회 논문집
    • /
    • 제27권1호
    • /
    • pp.77-85
    • /
    • 2015
  • 본 연구에서는 세장한 부재가 압축력을 받을 경우 발생하는 횡좌굴에 의한 내력의 저하를 방지하기 위해, 좌굴 전에 항복을 유도하는 응력제한장치의 개발에 관한 것으로서, 기존의 면외저항방식 및 슬롯방식과는 상이한 단면절삭방식을 제안하고 그 유효성을 실험적, 해석적으로 규명하고 있다. 단면절삭방식은 단면의 절삭범위에 따라 역학적 특성 및 구조적 성능이 상이한 것으로서, 연구의 대상은 절삭의 폭 및 절삭개수를 주 대상으로 하고 있다. 연구결과, 단면 깊이가 같은 경우 단면 절삭폭의 영향은 나타나지 않았으며, 단면 절삭폭을 좁게, 절삭개수가 많을수록 소성영역에서 좀 더 안정적인 거동을 나타내었다. 따라서, 단면절삭을 이용한 응력제한 장치는 항복 후 안정된 이력거동을 나타내고 있어 응력제한 장치로서 그 유효성이 확인되었으며, 향후 실 구조물에의 적용이 가능하리라 판단된다.

Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings

  • Shariati, Mahdi;Faegh, Shervin Safaei;Mehrabi, Peyman;Bahavarnia, Seyedmasoud;Zandi, Yousef;Masoom, Davood Rezaee;Toghroli, Ali;Trung, Nguyen-Thoi;Salih, Musab NA
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.569-581
    • /
    • 2019
  • Corrugated steel plate shear wall (CSPSW) as an innovative lateral load resisting system provides various advantages in comparison with the flat steel plate shear wall, including remarkable in-plane and out-of-plane stiffnesses and stability, greater elastic shear buckling stress, increasing the amount of cumulative dissipated energy and maintaining efficiency even in large story drifts. Employment of low yield point (LYP) steel web plate in steel shear walls can dramatically improve their structural performance and prevent early stage instability of the panels. This paper presents a comprehensive structural performance assessment of corrugated low yield point steel plate shear walls having circular openings located in different positions. Accordingly, following experimental verification of CSPSW finite element models, several trapezoidally horizontal CSPSW (H-CSPSW) models having LYP steel web plates as well as circular openings (for ducts) perforated in various locations have been developed to explore their hysteresis behavior, cumulative dissipated energy, lateral stiffness, and ultimate strength under cyclic loading. Obtained results reveal that the rehabilitation of damaged steel shear walls using corrugated LYP steel web plate can enhance their structural performance. Furthermore, choosing a suitable location for the circular opening regarding the design purpose paves the way for the achievement of the shear wall's optimal performance.

Natural frequency of a composite girder with corrugated steel web

  • Moon, Jiho;Ko, Hee-Jung;Sung, Ik Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.255-271
    • /
    • 2015
  • This paper presents the natural frequency of a composite girder with corrugated steel web (CGCSW). A corrugated steel web has negligible in-plane axial stiffness, due to the unique characteristic of corrugated steel webs, which is called the accordion effect. Thus, the corrugated steel web only resists shear force. Further, the shear buckling resistance and out-of-plane stiffness of the web can be enhanced by using a corrugated steel web, since the inclined panels serve as transverse stiffeners. To take these advantages, the corrugated steel web has been used as an alternative to the conventional pre-stressed concrete girder. However, studies about the dynamic characteristics, such as the natural frequency of a CGCSW, have not been sufficiently reported, and it is expected that the natural frequency of a CGCSW is different from that of a composite girder with flat web due to the unique characteristic of the corrugated steel web. In this study, the natural frequency of a CGCSW was investigated through a series of experimental studies and finite element analysis. An experimental study was conducted to evaluate the natural frequency of CGCSW, and the results were compared with those from finite element analysis for verification purpose. A parametric study was then performed to investigate the effect of the geometric characteristics of the corrugated steel web on the natural frequency of the CGCSW. Finally, a simplified beam model to predict the natural frequency of a CGCSW was suggested.