• Title/Summary/Keyword: out plane stress

Search Result 329, Processing Time 0.056 seconds

Stress intensity factor of semi-infinite parallel crack propagated with constant velocity in dissimilar orthotropic strip under out-of-plane deformation (상이한 직교이방성 띠판에 대한 면외변형 하의 반무한 등속 평행균열에서의 응력확대계수)

  • Park, Jae-Wan;Kwon, Yong-Su;Jeong, Jae-Tack;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.447-456
    • /
    • 1997
  • Stress intensity factor of semi-infinite parallel crack propagation with constant velocity in dissimilar orthotropic strip under out-of-plane clamped desplacement is investigated. Using Fourier integral transforms the boundary value problem is derived by a pair of dual integral equation and finally reduced to a single Wiener-Hopf equation. By applying Wiener-Hopf technique the equation is solved. Applying this result the asymptotic stress fields near the crack tip are determined, from which the stress intensity factor is obtained in closed form. The more the ratio of anisotropy or the ratio of bi-material shear modulus increase in the main material including the crack, the more the stress intensity factor increases. Discontinuity in the stress intensity factor is found as the parallel crack approaches the interface. In special case, the results of isotropic materials agree well with those by the previous researchers.

Effect of Initial Uniform Moment on Lateral Free Vibration of Arches (등분포 모멘트를 받는 아치의 횡 자유진동)

  • 염응준;한택희;임남형;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.3-10
    • /
    • 2002
  • Recently, arches are used structurally because of their high in-plane stiffness and strength, which result from their ability to transmit most of the applied loading by axial forces actions, so that the bending actions are reduced. On the other hand, the resistances of arches to (out-of-plane,) flexural-torsional behavior depend on the rigidities EI/sub y/, for lateral bending, GJ for Uniform torsion, and EI/sub w/ for warping torsion which are related to axial stress for flexural-torsional behavior. The resistance of an arch to out-of-plane behavior may be reduced by its in-plane curvature, and so it may require significant lateral bracing. Thus. it is supposed that In-plane preloading which cause an axial stress, have an effect on out-of-plane free vibration behavior of arches. Because axial stresses caused increase or decrease out-of-plane stiffness. But study about this substance is insufficient. In this thesis, We will study an effect of preloading on lateral free vibration of arches, using finite element method based on Kang and Yoo's curved beam theory (about curved beam element have 7 degree of freedom including warping) with FORTRAN programming.

  • PDF

Stress fields on an isotropic semi-infinite plane with a circular hole subjected to arbitrary loads using the constraint-release technique

  • Tsutsumi, Takashi;Sato, Keiji;Hirashima, Ken-Ichi;Arai, Hiroshi
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.237-246
    • /
    • 2002
  • In this paper, the solution of a semi-infinite plane with one circular hole is presented. This solution is induced by repeatedly superposing the solution of an infinite plane with one circular hole and that of a semi-infinite plane without holes to cancel out the stresses arising on both boundaries. This procedure is carried out until the stresses arising on both boundaries converge. This method does not require complicated calculation procedures as does the method using stress functions defined in a bipolar coordinate system. Some numerical results are shown by graphical representations.

Effect of Out-of- Plane Stress on the theoretical Forming Limit Strain of Sheet Metals (판재의 이론적 변형한계 스트레인의 면외압 의존성)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.162-169
    • /
    • 2004
  • In press forming of sheet metals, the material sheet is usually subjected to very large plastic strain under in-plane stressing. Moreover, the sheet also very often is subjected to out-of-plane compressive force between tools such as the upper and lower dies, the blank holder and the die, and so forth. In this paper, it is clearly demonstrated theoretically that out-of-plane stress may notably raise the forming limit strain and thus it can be effectively utilized to avoid earlier fracture of the sheet in press forming.

  • PDF

Prediction of Bending Fatigue Life of Cracked Out-of-Plane Gusset Joint Repaired by CFRP Plates

  • Matsumoto, Risa;Komoto, Takafumi;Ishikawa, Toshiyuki;Hattori, Atsushi;Kawano, Hirotaka
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1284-1296
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP), plates bonding repair method is one of the simple repair methods for cracked steel structures. In this study, the influence of width of CFRP plates on bending fatigue life of out-of-plane gusset joint strengthened with CFRP plates was investigated from the experimental and numerical point of view. In the bending fatigue test of cracked out-of-plane gusset joint strengthened with CFRP plates, the effect of width of CFRP plates on crack growth life was clarified experimentally. Namely, it was revealed that the crack growth life becomes larger with increasing the width of CFRP plates. In the numerical approach, the stress intensity factor (SIF) at the surface point of a semi-elliptical surface crack was estimated based on the linear fracture mechanics. Furthermore, the extended fatigue life of cracked out-of-plane gusset joint strengthened with CFRP plates was evaluated by using the estimated SIF at the surface point and the empirical formula of the aspect ratio of semi-elliptical crack. As the results of numerical analysis, the estimated fatigue life of the specimen strengthened with CFRP plates showed the good agreement with the test results.

Extension of a new tailoring optimisation technique to sandwich shells with laminated faces

  • Icardi, Ugo
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.739-759
    • /
    • 2012
  • The tailoring optimization technique recently developed by the author for improving structural response and energy absorption of composites is extended to sandwich shells using a previously developed zig-zag shell model with hierarchic representation of displacements. The in-plane variation of the stiffness properties of plies and the through-the thickness variation of the core properties are determined solving the Euler-Lagrange equations of an extremal problem in which the strain energy due to out-of-plane strains and stresses is minimised, while that due to their in-plane counterparts is maximised. In this way, the energy stored by unwanted out-of-plane modes involving weak properties is transferred to acceptable in-plane modes. As shown by the numerical applications, the critical interlaminar stress concentrations at the interfaces with the core are consistently reduced without any bending stiffness loss and the strength to debonding of faces from the core is improved. The structural model was recently developed by the author to accurately describe strain energy and interlaminar stresses from the constitutive equations. It a priori fulfills the displacement and stress contact conditions at the interfaces, considers a second order expansion of Lame's coefficients and a hierarchic representation that adapts to the variation of solutions. Its functional d.o.f. are the traditional mid-plane displacements and the shear rotations, so refinement implies no increase of the number of functional d.o.f. Sandwich shells are represented as multilayered shells made of layers with different thickness and material properties, the core being treated as a thick intermediate layer.

Research on stress distributions around welds of three-planar tubular Y-joints under out-of-plane bending moment

  • Shiliu Bao;Wenhua Wang;Jikai Zhou;Xin Li
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.181-196
    • /
    • 2023
  • Marine structures including offshore wind turbines (OWTs) always work under cyclic loads, which arouses much attention on the fatigue design. The tripod substructure is one of the typical foundation forms for fixed OWTs. The three-planar tubular Y-joint (3Y joint) is one of the important components in fatigue design as it is most likely to have cracks. With the existence of the multiplanar interaction effect, calculating the hot spot stress (HSS) of 3Y joints is complicated. To assist with fatigue design, the distributions of stress concentration factor (SCF) and multiplanar interaction factor (MIF) along weld toe curves induced by the out-of-plane bending moment are explored in this study. An FE analysis method was first developed and verified against experimental results. This method was applied to build a numerical database including 1920 FE models covering common ranges of geometric parameters. A parametric study has been carried out to reveal the distribution patterns of SCF and MIF. After multidimensional nonlinear fittings, SCF and MIF distribution formulas have been proposed. Accuracy and reliability checking prove that the proposed formulas are suitable for calculating the HSS of 3Y joints.

Quantitative Measurement of Out-of-plane Deformation Using Shearography (전단간섭계를 이용한 면외변형의 정량적 계측)

  • Chang, Ho-Seob;Jung, Sung-Wook;Kim, Kyoung-Suk;Jung, Hyun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.131-137
    • /
    • 2007
  • Electronic Speckle Pattern Interferometry(ESPI) is a common method for measuring out-of-plane deformation and in-plane deformation and applied for vibration analysis and strain/stress analysis. However, ESPI is sensitive to environmental disturbance, which provide the limitation of industrial application. On the other hand, Shearography based on shearing interferometer which is insensitive to vibration disturbance can directly measure the first derivative of out-of-plane deformation. In this paper a technique that extract out-of-plane deformation from results of shearography by numerical processing is proposed and measurement results of ESPI and Shearoraphy are compared quantitatively.

Vibration Analysis of an Axially Moving Membrane with In-plane/Out-of-plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • Shin Changho;Chung Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.910-918
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption, the equation of out-of-plane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

Development of Bulge Testing System for Mechanical Properties Measurement of Thin Films : Elastic Modulus of Electrolytic Copper Film (박막의 기계적 물성 측정을 위한 벌지 시험 시스템 개발: 전해 동 박의 탄성 계수)

  • Kim, Dong-Iel;Huh, Yong-Hak;Kim, Dong-Jin;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1807-1812
    • /
    • 2007
  • A bulge testing system was developed to measure mechanical properties of thin film materials. A bulge pressure test system for pressurizing the bulge window of the film and a micro out-of-plane ESPI(Electronic Speckle Pattern Interferometric) system for measuring deflection of the film were included in the testing system developed. For the out-of-plane ESPI system, whole field speckle fringe pattern, corresponding to the out-of-plane deflection of the bulged film, was 3-dimensionally visualized using 4-bucket phase shifting algorithm and least square phase unwrapping algorithm. The bulge pressure for loading and unloading was controlled at a constant rate. From the pressure-deflection curve measured by this testing system, ain-plane stress-strain curve could be determined. In this study, elastic modulus of an electrolytic copper film 18 ${\mu}m$ was determined. The modulus was calculated from determining the plain-strain biaxial elastic modulus at the respective unloading slopes of the stress-strain curve and for the Poisson's ratio of 0.34.

  • PDF