• Title/Summary/Keyword: out of plane loading

Search Result 161, Processing Time 0.024 seconds

Nonlinear Finite Element Analysis for Ultimate Hull Girder Strength of Container Ship (컨테이너선의 최종 종강도 평가를 위한 비선형 유한요소 해석의 적용)

  • Yeom, Cheol Wung;Moon, Jeong Woo;Nho, In Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • Through the recent accident, the checking of ultimate hull girder capacity for container ship should be needed. Smith’s method is well known as the only simplified method to access rapidly for ultimate hull girder capacity except very expensive nonlinear F.E approach. This simplified method, however, is admitted to apply only to bulker and tanker in accordance with Classification Rules up to now. The targets of this study are to verify effectiveness of the simplified method for container ship’s ultimate hull girder strength and to propose the safety factor considering the local bending in double bottom structures due to out of plane loads through the nonlinear F.E analyses. Two different sized ships and three loading conditions which are pure bending, homo-loading and one-bay empty condition were used for this study. Based on the F.E results, the present study showed that CSR’s simplified method is available for the ultimate hull girder strength of container ship and over 1.2 of safety factor should be applied to consider the local bending effect in double bottom structures due to out of plane loads such as sea pressure an cargo.

Enhancement of the buckling strength of glass beams by means of lateral restraints

  • Belis, J.;Impe, R. Van;Lagae, G.;Vanlaere, W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.495-511
    • /
    • 2003
  • New material applications and transparency are desired by contemporary architects. Its superb transparency and high strength make glass a very suitable building material -in spite of its brittleness- even for primary load bearing structures. Currently we will focus on load bearing glass beams, subjected to different loading types. Since glass beams have a very slender, rectangular cross section, they are sensitive to lateral torsional buckling. Glass beams fail under a critical buckling load at stresses that lie far below the theoretical simple bending strength, due to the complex combination of torsion and out-of-plane bending, which characterises the instability phenomenon. The critical load can be increased considerably by preventing the upper rim from moving out of the beam's plane. Different boundary conditions are examined for different loading types. The load carrying capacity of glass beams can be increased three times and more using relatively simple, cheap lateral restraints.

Analysis Study on Ultimate Strength of Single-shear Bolted Connections with Austenitic Stainless Steel(STS201) with Varied End and Edge distances (연단거리를 변수로 갖는 오스테나이트계 스테인리스강(STS201) 일면전단 볼트접합부의 최대내력에 관한 해석연구)

  • Cha, Eun-Young;Hwang, Bo-Kyung;Lee, Hoo-Chang;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • This study focused on the ultimate behaviors(ultimate strength and fracture mode ) of single shear bolted connection with austenitic sainless steel(STS201) and curling effect on the ultimate strength using finite element analysis based on test results. Main variables are end distance in the parallel direction to loading and edge distance in the perpendicular direction to loading. The validation of finite element analysis procedures was verified through the comparisons of ultimate strength, fracture mode and curling(out-of-plane deformation) occurrence between test results and numerical predictions. Curling was observed in both test and analysis results and it reduced the ultimate strength of single- shear bolted connections with relatively long end distances. Strength reduction ratios caused by curling were estimated quantitatively by maximum 19%, 32%, respectively for specimens with edge distance, 48 mm and 60 mm compared with strengths of uncurled connections with restrained out-of-plane deformation. Finally, analysis strengths were compared with current design strengths and it is found that design block shear equations did not provide the accurate predictions for bolted connections with strength reduction by curling.

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.

Experimental Study on Structural Performance of Steel Slit Damper According to Restrained Out-of-plane Deformation (면외변형 구속에 따른 강재슬릿댐퍼의 구조성능에 관한 실험적 연구)

  • Jin-Woo Kim;U-Jin Kwon;Kwang-Yong Choi;Young-Ju Kim;Hae-Yong Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.86-94
    • /
    • 2023
  • In this study, a supplementary detail capable of restraining out-of-plane deformation was proposed for steel slit dampers, and a constant amplitude cyclic loading test was performed with the application of the proposed detail and the shape ratio of the damper as variables. Repeated hysteresis and cumulative plastic deformation according to the test results were analyzed. Repeated hysteresis of the slit damper with the proposed detail showed a stable spindle-shaped hysteresis within the set variable range, and no out-of-plane deformation of the damper was observed until ultimate state. It was confirmed that the restraining panel effect through the application of the proposed details is effective in terms of both the strength and deformation capacity of the damper. In addition, experimental parameters for the fatigue curve evaluation of slit dampers were derived in this study. Based on the results, it is judged that quantitative comparison of structural performance with various types of seismic devices will be possible in the future.

Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour

  • Jahangir, Hashem;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.877-889
    • /
    • 2020
  • This work features the outcomes of an empirical investigation into the characteristics of steel reinforced grout (SRG) composite - concrete interfaces. The parameters varied were loading rate, densities of steel fibres and types of load displacement responses or measurements (slip and machine grips). The following observations and results were derived from standard single-lap shear tests. Interfacial debonding of SRG - concrete joints is a function of both fracture of matrix along the bond interface and slippage of fibre. A change in the loading rate results in a variation in peak load (Pmax) and the correlative stress (σmax), slip and machine grips readings at measured peak load. Further analysis of load responses revealed that the behaviour of load responses is shaped by loading rate, fibre density as well as load response measurement variable. Notably, the out-of-plane displacement at peak load increased with increments in load rates and were independent of specimen fibre densities.

Elastic Analysis of a Half-Plane Containing an Inclusion and a Void Using Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한, 함유체와 공동을 포함한 반무한 고체에서의 탄성해석)

  • Lee, Jung-Ki;Yoon, Koo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1072-1087
    • /
    • 2008
  • A mixed volume and boundary integral equation method (Mixed VIEM-BIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to the traction-free boundary. A detailed analysis of stress field at the interface between the isotropic matrix and the isotropic or orthotropic inclusion is carried out for different values of the distance between the center of the inclusion and the traction-free surface boundary in an isotropic elastic half-plane containing three different geometries of an isotropic or orthotropic inclusion and a void. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.

The Structural Strength Assesment of Lifting Lug (리프팅 러그의 구조 강도 평가)

  • Heo, Nam-Hak;Lee, Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.42-50
    • /
    • 2014
  • Lifting lugs are frequently used in shipyard to transportate and turn over blocks. As the shipbuilding technology develops, blocks has become bigger and bigger, and block management technology takes a more important role in shipbuilding to enhance the productivity. For the sake of economic as well as safe design of lug structure, more rigorous analysis is needed. In this study in order to investigate the strength characteristics of two type of lug, that is, D and T type lugs, non-linear strength analysis has been carried out to compare the ultimate strength characteristics of two types of lug varying in-plane and out-of-plane loading directions. Based on the present numerical analysis results, it can be drawn that T type lug is superior to D type lug from view points of ultimate strength and deformation.

Experimental Study on Bending and Shear Behavior of SC Structures under Out of Plane Load (면외하중을 받는 보형 SC구조 시험체의 휨 및 전단특성에 관한 실험적 연구-시험방법을 중심으로-)

  • Park, Dong-Su;Jeoung, Won-Seoup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.65-68
    • /
    • 2008
  • This is an experimental study on the out of plane load behavior of SC (Steel Plate Concrete) wall module under bending and shear loading. 4 tests were conducted to verify structural performance according to rib reinforcement ratio, stud reinforcement ratio and shear reinforcement ratio. On the basis of test results, it is found that rib reinforcement ratio is a main factor of flexural strength of SC structures.

  • PDF

Performance Comparison of Steel Rod and Steel Plate Dampers with the Same Damper Height (댐퍼 높이가 같은 강봉 및 강판 댐퍼의 성능 비교)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.49-57
    • /
    • 2022
  • In this study, based on the research results of the steel plate and steel rod dampers with rocking behavior, the moment and the drift ratio were compared and evaluated. As a test result evaluation, it was showed that the behavior of R15-200 and R15-140 was very good than other dampers. And the steel rod damper showed in-plane behavior to the loading direction, and was evaluated to prevent out-of-plane behavior that causes performance degradation.