• Title/Summary/Keyword: out of plane loading

Search Result 162, Processing Time 0.029 seconds

Additional Damage of A17075-T651 under $90^{\circ}C$ Out-of phase Biaxial Loading from Crystal Structure Dependence ($90^{\circ}C$위상차의 이축하중 하에서 A17075-T651의 부가적 손상에 관한 결정구조 의존성에 관한 연구)

  • Lee, Hyun-Woo;Oh, Se-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.104-111
    • /
    • 1997
  • Accounting for the additional damages come out from non-proportional loading path effect, material damage according to crystal structure dependence was studied. Microscopic observations of damaged material by SEM(Scanning Electron Microscope) showed crystal structure dependence. Biaxial in-phase loaded specimens showed the slips of same direction, which pararell each other, but biaxial 90.deg. out-of-phase loaded specimens showed multiply crossed slips. S. H. Doong and D. F. Socie reported that wavy/planar or planar slip material showed the increase in the cyclic hardening level during non-proportional cycling. From these results, the additional hardening and non-proportional loading effects were related with slip mechanism, and the slip mechanism was related with crystal structure. In the present study, a damage mechanism which accounts for the non-proportional loading effect from crystal structure dependence was considered and applied to A17075-T651.

Experimental characterization of timber framed masonry walls cyclic behaviour

  • Goncalves, Ana Maria;Ferreira, Joao Gomes;Guerreiro, Luis;Branco, Fernando
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.189-204
    • /
    • 2015
  • After the large destruction of Lisbon due to the 1755 earthquake, the city had to be almost completely rebuilt. In this context, an innovative structural solution was implemented in new buildings, comprising internal timber framed walls which, together with the floors timber elements, constituted a 3-D framing system, known as "cage", providing resistance and deformation capacity for seismic loading. The internal timber framed masonry walls, in elevated floors, are constituted by a timber frame with vertical and horizontal elements, braced with diagonal elements, known as Saint Andrew's crosses, with masonry infill. This paper describes an experimental campaign to assess the in-plane cyclic behaviour of those so called "frontal" walls. A total series of 4 tests were conducted in 4 real size walls. Two models consist of the simple timber frames without masonry infill, and the other two specimens have identical timber frames but present masonry infill. Experimental characterization of the in-plane behaviour was carried out by static cyclic shear testing with controlled displacements. The loading protocol used was the CUREE for ordinary ground motions. The hysteretic behaviour main parameters of such walls subjected to cyclic loading were computed namely the initial stiffness, ductility and energy dissipation capacity.

A Proposal of Parameter to Predict Biaxial Fatigue Life for CF8M Cast Stainless Steels (CF8M 주조 스테인리스강의 2축 피로수명 예측을 위한 파라미터의 제안)

  • Park Joong Cheul;Kwon Jae Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.815-821
    • /
    • 2005
  • Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional-loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi-Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified.

Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.611-616
    • /
    • 2000
  • Numerical studies were carried out to investigate the long-term behavior of late plates in basement, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was modified by adding function of creep and shrinkage analysis. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with three parameters; 1) loading sequence of floor load, compression and time 2) uniaxial an biaxial compression and 3) the ratio of dead to live load.

  • PDF

Seismic Evaluation of Face-Loaded Unreinforced Masonry Walls (URM) (면외하중에 대한 비보강 조적벽의 내진성능 평가)

  • 유은진;이한선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.304-311
    • /
    • 2001
  • Unreinforced masonry is widely used as a structural material in residential constructions and known to have poor seismic performance in the out-of-plane rather than in-plane behavior. In countries of lower seismicity such as Korea, it is necessary to check the possibility of the mode of the out-of-plane failure. Though face loading is a major cause of the failure of masonary walls, Korean Seismic Code does not include provision for face-loaded unreinforced masonry walls. This paper briefly reviews the concept of analysis for unreinforced masonry walls subjected to face-load excitation proposed by Priestley, and its applicatility to Korean case.

  • PDF

Non-Cavitation Noise from Large Scale Marine Propeller (대형 선박용 프로펠러의 비공동소음 예측)

  • Ryu, Ki-Wahn;Kim, Bong-Ki;Yoo, Yong-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.562-567
    • /
    • 2012
  • Noises from the large scale marine propeller are calculated numerically on non-cavitation condition. The hydrodynamic analysis are carried out by potential based panel method with time marching free wake approach. The distribution of hyrodynamic loads on the propeller surface and noise signals are obtained using the unsteady Bernoulli's equation and the Farasssat formula respectively. It turns out that the noise signal shows strong peak at the blade passage frequency. Noise signals and directivity patterns for both the thickness and the loading noise are compared with each other. The directivity pattern for the loading noise shows minor lobe at the backward side of the rotating disc plane.

  • PDF

A PATH-SWITCHING STRATEGY BY COMBINING THE USE OF GENERALIZED INVERSE AND LINE SEARCH

  • Choong, K.K.;Hangai, Y.;Kwun, T.J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.95-102
    • /
    • 1994
  • A path-switching strategy by combining the use of generalized inverse and line search is proposed. A reliable predictor for the tangent vector to bifurcation path is first computed by using the generalized inverse approach. A line search in the direction of maximum gradient of total potential at the point of intersection between the above predictor and a constant loading plane introduced in the vicinity of the detected bifurcation point is then carried out for the purpose of obtaining an improved approximation for a point on bifurcation path. With this approximation obtained, an actual point on bifurcation path is then computed through iteration on the constant loading plane.

  • PDF

Non-Linear dynamic pulse buckling of laminated composite curved panels

  • Keshav, Vasanth;Patel, Shuvendu N.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.181-190
    • /
    • 2020
  • In this paper, non-linear dynamic buckling behaviour of laminated composite curved panels subjected to dynamic in-plane axial compressive loads is studied using finite element methods. The work is carried out using the finite element software ABAQUS. The curved panels are modelled with S4R element and the nonlinear dynamic equilibrium equations are solved using the ABAQUS/Explicit algorithm. The effect of aspect ratio, radius of curvature and thickness are studied. The importance of orientation of plies in the direction of loading is also reiterated in this study. Vol'mir's criterion is used to calculate the dynamic buckling loads. The panels are subjected to rectangular pulse load of various amplitude and durations and the responses are observed. For particular loading amplitude, a critical value of loading duration is observed beyond which the variation of dynamic buckling load is insignificant. It is also observed that, the value of dynamic bucking load reduces as the loading duration is increased though the reduction is not much after a particular loading duration.

A Study on Flexural and Shear Behavior of the Structure with Steel Plate Concrete to Reinforced Concrete Member's Connection (철근 콘크리트와 강판 콘크리트 간 이질접합부로 구성된 구조물의 휨 및 전단거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Lee, Jong Bo;Won, Deok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.267-275
    • /
    • 2012
  • This paper describes the experimental study on the structural behavior of the joint plane between a RC(Reinforced Concrete) wall and a SC(Steel Plate Concrete) wall under out-of plane flexural loads and in-plane shear loads. The test specimens were produced with L and I shape to assess efficiently flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquake, cyclic loading tests were carried out. As results of the out-of plane flexural tests, ductile failure mode of vertical bars was shown under a push load and the failure load was more than nominal strength of the specimen. And the latter test was performed to verify the variation which was composition presence of horizontal bars in the SC member. The test results showed that capacity of the specimens was more than their nominal strength regardless of composition presence of horizontal bars.

Fatigue Strength and Fracture Behaviour of CHS-to-RHS T-Joints Subjected to Out-of-Plane Bending

  • Bian, Li-Chun;Lim, Jae-Kyoo;Kim, Yon-Jig
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2003
  • The fatigue behaviour of six different hollow section T-joints subjected to out-of-plane bending moment was investigated experimentally using scaled steel models. The joints had circular brace members and rectangular chord members. Hot spot stresses and the stress concentration factors. (SCFs) were determined experimentally. Fatigue testing was carried out under constant amplitude loading in air. The test results have been statistically evaluated, and show that the experimental SCF values for circular-to-rectangular (CHS-to-RHS) hollow section joints were found to be below those of circular-to-circular (CHS-to-CHS) hollow section joints. The fatigue strength, referred to experimental hot spot stress, was in reasonably good agreement with referred fatigue design codes for tubular joints.