• Title/Summary/Keyword: osteogenesis

Search Result 378, Processing Time 0.026 seconds

Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells

  • Ozguldez, Hatice O.;Cha, Junghwa;Hong, Yoonmi;Koh, Ilkyoo;Kim, Pilnam
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.337-345
    • /
    • 2018
  • Background: Human mesenchymal stem cells (hMSCs) are, due to their pluripotency, useful sources of cells for stem cell therapy and tissue regeneration. The phenotypes of hMSCs are strongly influenced by their microenvironment, in particular the extracellular matrix (ECM), the composition and structure of which are important in regulating stem cell fate. In reciprocal manner, the properties of ECM are remodeled by the hMSCs, but the mechanism involved in ECM remodeling by hMSCs under topographical stimulus is unclear. In this study, we therefore examined the effect of nanotopography on the expression of ECM proteins by hMSCs by analyzing the quantity and structure of the ECM on a nanogrooved surface. Methods: To develop the nanoengineered, hMSC-derived ECM, we fabricated the nanogrooves on a coverglass using a UV-curable polyurethane acrylate (PUA). Then, hMSCs were cultivated on the nanogrooves, and the cells at the full confluency were decellularized. To analyze the effect of nanotopography on the hMSCs, the hMSCs were re-seeded on the nanoengineered, hMSC-derived ECM. Results: hMSCs cultured within the nano-engineered hMSC-derived ECM sheet showed a different pattern of expression of ECM proteins from those cultured on ECM-free, nanogrooved surface. Moreover, hMSCs on the nano-engineered ECM sheet had a shorter vinculin length and were less well-aligned than those on the other surface. In addition, the expression pattern of ECM-related genes by hMSCs on the nanoengineered ECM sheet was altered. Interestingly, the expression of genes for osteogenesis-related ECM proteins was downregulated, while that of genes for chondrogenesis-related ECM proteins was upregulated, on the nanoengineered ECM sheet. Conclusions: The nanoengineered ECM influenced the phenotypic features of hMSCs, and that hMSCs can remodel their ECM microenvironment in the presence of a nanostructured ECM to guide differentiation into a specific lineage.

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

The Molecular Mechanism of Long Non-Coding RNA MALAT1-Mediated Regulation of Chondrocyte Pyroptosis in Ankylosing Spondylitis

  • Chen, Wei;Wang, Feilong;Wang, Jiangtao;Chen, Fuyu;Chen, Ting
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.365-375
    • /
    • 2022
  • Long non-coding RNAs (lncRNAs) may be important regulators in the progression of ankylosing spondylitis (AS). The competing endogenous RNA (ceRNA) activity of lncRNAs plays crucial roles in osteogenesis. We identified the mechanism of the differentially expressed lncRNA MALAT1 in AS using bioinformatic analysis and its ceRNA mechanism. The interaction of MALAT1, microRNA-558, and GSDMD was identified using integrated bioinformatics analysis and validated. Loss- and gain-of-function assays evaluated their effects on the viability, apoptosis, pyroptosis and inflammation of chondrocytes in AS. We found elevated MALAT1 and GSDMD but reduced miR-558 in AS cartilage tissues and chondrocytes. MALAT1 contributed to the suppression of cell viability and facilitated apoptosis and pyroptosis in AS chondrocytes. GSDMD was a potential target gene of miR-558. Depletion of MALAT1 expression elevated miR-558 by inhibiting GSDMD to enhance cell viability and inhibit inflammation, apoptosis and pyroptosis of chondrocytes in AS. In summary, our key findings demonstrated that knockdown of MALAT1 served as a potential suppressor of AS by upregulating miR-558 via the downregulation of GSDMD expression.

Can bone marrow aspirate improve mandibular fracture repair in camels (Camelus dromedarius)? A preliminary study

  • Al-Sobayil, Fahd;Sadan, Madeh A.;El-Shafaey, El-Sayed;Ahmed, Ahmed F.
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.90.1-90.11
    • /
    • 2020
  • Background: Mandibular fractures are common in camels, leading to considerable economic losses. This study explored methods of improving mandibular fractures repair, adjuvant with interdental wire, or bone plate fixation. Autologous bone marrow (BM) injection enhances osteogenesis and rapid healing. Objectives: To investigate the effect of autologous BM aspirate as an adjuvant treatment for repairing mandibular fractures in camels with interdental wire, or bone plate fixation. Methods: Thirty dromedary camels aged 5-8 years and of both sexes were randomly divided into 4 treatment groups: group 1 (n = 10) treated with stainless steel wire fixation and BM injection at the fracture line, group 2 (n = 10) treated with plate fixation and BM injection at the fracture line, group 3 (n = 5) treated with stainless steel bone wire fixation and placebo saline injection at the fracture line, and group 4 (n = 5) treated with plate fixation and placebo injection at the fracture line. The mandibular fractures were followed weekly for 12 weeks postoperatively to assess improvement and healing based on clinical evaluation, radiographic union scale, and bone turnover markers (i.e., bone alkaline phosphatase, osteocalcin, pyridinoline, and deoxypyridinoline). Results: Compared to other groups, elevated bone turnover markers in group 1 were demonstrated (p < 0.05) on the seventh postoperative day. Likewise, compared to other groups, both clinical findings and radiographic union scale significantly improved (p < 0.05) in group 1 on the 56th postoperative day. Conclusions: BM aspirate has a promising beneficial osteogenic effect on mandibular fracture repair in camels, most notably when combined with interdental wire fixation.

The effect of hard-type crosslinked hyaluronic acid with particulate bone substitute on bone regeneration: positive or negative?

  • Yun, Junseob;Lee, Jungwon;Kim, Sungtae;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.312-324
    • /
    • 2022
  • Purpose: The role of hard-type crosslinked hyaluronic acid (HA) with particulate bone substitutes in bone regeneration for combined inlay-onlay grafts has not been fully investigated. We aimed to evaluate the effect of hard-type crosslinked HA used with bone substitute in terms of new bone formation and space maintenance. Methods: A 15-mm-diameter round defect was formed in the calvaria of 30 New Zealand White rabbits. All animals were randomly assigned to 1 of 3 groups: the control group (spontaneous healing without material, n=10), the biphasic calcium phosphate (BCP) graft group (BCP, n=10), and the BCP graft with HA group (BCP/HA, n=10). The animals were evaluated 4 and 12 weeks after surgery. Half of the animals from each group were sacrificed at 4 and 12 weeks after surgery. Samples were evaluated using micro-computed tomography, histology, and histomorphometry. Results: The BCP group showed higher bone volume/tissue volume (BV/TV) values than the control and BCP/HA groups at both 4 and 12 weeks. The BCP and BCP/HA groups showed higher bone surface/tissue volume (BS/TV) values than the control group at both 4 and 12 weeks. The BCP group showed higher BS/TV values than the control and BCP/HA groups at both 4 and 12 weeks. No statistically significant difference in newly formed bone was found among the 3 groups at 4 weeks. The BCP group showed significantly higher new bone formation than the BCP/HA group at 12 weeks. Conclusions: Hard-type crosslinked HA did not show a positive effect on new bone formation and space maintenance. The negative effect of hard-type crosslinked HA may be due to the physical properties of HA that impede osteogenic potential.

A biodegradable magnesium alloy sample induced rat osteochondral defect repair through Wnt/β-catenin signaling pathway

  • Zhao, Kexin;Chen, Yingqi;Yu, Fei;Jian, Weng;Zheng, Ming;Zeng, Hui
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.301-317
    • /
    • 2022
  • Many studies have shown that Mg-Nd-Zn-Zr (abbreviated as JDBM) alloy has good biocompatibility and biodegradability as well as promotion of cell adhesion, proliferation and differentiation, and Wnt/β-catenin signaling pathway may play a unique role in joint tissue by controlling the function of chondrocytes, osteoblasts and synoviocytes. However, it is not clear whether the JDBM alloy induces osteochondral repair through Wnt/β-catenin signaling pathway. This study aims to verify that JDBM alloy can repair osteochondral defects in rats, which is realized by Wnt/β-catenin signaling pathway. In this study, the osteochondral defect model of the right femoral condyle non-weight-bearing area in rats was established and randomly divided into three groups: Control group, JDBM alloy implantation group and JDBM alloy implantation combined with signaling pathway inhibitor drug ICRT3 injection. It was found that after JDBM alloy implantation, the bone volume fraction (BVF) became larger, the bone trabeculae were increased, the relative expression of osteogenesis gene Runx2, Bmp2, Opn, Ocn and chondrogenesis gene Collagen II, Aggrecan were increased, and the tissue repair was obvious by HE and Masson staining, which could be inhibited by ICRT3.

Inhibition of Osteoclast Differentiation and Promotion of Osteogenic Formation by Wolfiporia extensa Mycelium

  • Tae Hyun Son;Shin-Hye Kim;Hye-Lim Shin;Dongsoo Kim;Jin-Sung Huh;Rhim Ryoo;Yongseok Choi;Sik-Won Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1197-1205
    • /
    • 2023
  • Osteoporosis, Greek for "porous bone," is a bone disease characterized by a decrease in bone strength, microarchitectural changes in the bone tissues, and an increased risk of fracture. An imbalance of bone resorption and bone formation may lead to chronic metabolic diseases such as osteoporosis. Wolfiporia extensa, known as "Bokryung" in Korea, is a fungus belonging to the family Polyporaceae and has been used as a therapeutic food against various diseases. Medicinal mushrooms, mycelium and fungi, possess approximately 130 medicinal functions, including antitumor, immunomodulating, antibacterial, hepatoprotective, and antidiabetic effects, and are therefore used to improve human health. In this study, we used osteoclast and osteoblast cell cultures treated with Wolfiporia extensa mycelium water extract (WEMWE) and investigated the effect of the fungus on bone homeostasis. Subsequently, we assessed its capacity to modulate both osteoblast and osteoclast differentiation by performing osteogenic and anti-osteoclastogenic activity assays. We observed that WEMWE increased BMP-2-stimulated osteogenesis by inducing Smad-Runx2 signal pathway axis. In addition, we found that WEMWE decreased RANKL-induced osteoclastogenesis by blocking c-Fos/NFATc1 via the inhibition of ERK and JNK phosphorylation. Our results show that WEMWE can prevent and treat bone metabolic diseases, including osteoporosis, by a biphasic activity that sustains bone homeostasis. Therefore, we suggest that WEMWE can be used as a preventive and therapeutic drug.

Evaluation of the regenerative capacity of stem cells combined with bone graft material and collagen matrix using a rabbit calvarial defect model

  • Jun-Beom Park;InSoo Kim;Won Lee;Heesung Kim
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.6
    • /
    • pp.467-477
    • /
    • 2023
  • Purpose: The purpose of this study was to evaluate the regenerative capacity of stem cells combined with bone graft material and a collagen matrix in rabbit calvarial defect models according to the type and form of the scaffolds, which included type I collagen matrix and synthetic bone. Methods: Mesenchymal stem cells (MSCs) were obtained from the periosteum of participants. Four symmetrical 6-mm-diameter circular defects were made in New Zealand white rabbits using a trephine drill. The defects were grafted with (1) group 1: synthetic bone (β-tricalcium phosphate/hydroxyapatite [β-TCP/HA]) and 1×105 MSCs; (2) group 2: collagen matrix and 1×105 MSCs; (3) group 3: β-TCP/HA, collagen matrix covering β-TCP/HA, and 1×105 MSCs; or (4) group 4: β-TCP/HA, chipped collagen matrix mixed with β-TCP/HA, and 1×105 MSCs. Cellular viability and cell migration rates were analyzed. Results: Uneventful healing was achieved in all areas where the defects were made at 4 weeks, and no signs of infection were identified during the healing period or at the time of retrieval. New bone formation was more evident in groups 3 and 4 than in the other groups. A densitometric analysis of the calvarium at 8 weeks post-surgery showed the highest values in group 3. Conclusions: This study showed that the highest regeneration was found when the stem cells were applied to synthetic bone along with a collagen matrix.

Hydroxychavicol Inhibits In Vitro Osteoclastogenesis via the Suppression of NF-κB Signaling Pathway

  • Sirada Srihirun;Satarat Mathithiphark;Chareerut Phruksaniyom;Pitchanun Kongphanich;Wisutthaporn Inthanop;Thanaporn Sriwantana;Salunya Tancharoen;Nathawut Sibmooh;Pornpun Vivithanaporn
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2024
  • Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)-positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκβα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.

THE ROLE OF TRANSCRIPTION FACTOR MSX2 AND DLX5 IN CALVARIAL BONE AND SUTURE DEVELOPMENT (두개골 및 두개봉합부 초기발육과정에서의 전사조절인자인 Msx2와 Dlx5의 역할)

  • Song, Min-Ho;Park, Mi-Hyun;Nam, Soon-Hyeun;Kim, Young-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.391-405
    • /
    • 2003
  • Craniosynostosis, known as a premature fusion of cranial sutures, is a developmental disorder characterized by precocious differentiation and mineralization of osteoblasts in the calvarial sutures. Recent genetic studies have demonstrated that mutation in the homeobox gene Msx2 causes Boston-type human craniosynostosis. Additionally, the phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. Furthermore transcription of osteocalcin, a mature osteoblast marker, is reciprocally regulated by the homeodomain proteins Msx2 and Dlx5. These facts suggest important roles of osteocalcin, Msx2 and Dlx5 genes in the calvarial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we have first analyzed by in situ hybridization the expression of osteocalcin, Msx2 and Dlx5 genes in the developing parietal bone and sagittal suture of mouse calvaria during the embryonic (E15-E18) stage. Osteocalcin mRNA was found in the periosteum of parietal bones from E15, and gradually more highly expressed with aging. Msx2 mRNA was intensely expressed in the sutural mesenchyme, osteogenic fronts and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and the periostem of parietal bones. To further examine the upstream signaling molecules of transcription factor Msx2 and Dlx5, we have done in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of BMP2-, BMP4-soaked beads onto the osteogenic fronts after 48 hours organ culture induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of $TGF{\beta}1$, GDF-6, -7, FGF-2, -4 and Shh did not induce the expression of Msx2 and Dlx5. Taken together. these data indicate that transcription factor Msx2 and Dlx5 play critical roles in the calvarial bone and suture development, and that BMP siganling is involved in the osteogenesis of calvarial bones and the maintenance of cranial sutures through regulating these two transcriotpn factors. Furthermore, different expression patterns between Msx2 and Dlx5 suggest their specific functions in the osteoblast differentiation.

  • PDF