• Title/Summary/Keyword: osteoblastic MC3T3-E1 cells

Search Result 92, Processing Time 0.031 seconds

Effects of Cultivated Wild Panax ginseng Extract on the Proliferation, Differentiation and Mineralization of Osteoblastic MC3T3-E1 Cells (산양삼(cultivated wild Panax ginseng) 추출물이 조골세포 활성에 미치는 영향)

  • Seo, Hyun-Ju;Eo, Hyun Ji;Kim, Hyun Jun;Jeon, Kwon Seok;Park, Gwang Hun;Hong, Se Chul;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.227-236
    • /
    • 2020
  • Panax ginseng C.A. Meyer (P. ginseng) is known to exert a wide range of pharmacological effects both in vitro and in vivo. Although studies on ginsenoside, antioxidant activity, and anticancer effect of the cultivated wild Panax ginseng (CWP) have been conducted, there is little research on the effect of CWP extract on bone metabolism. In this study, we investigated the potential anti-osteoporotic properties of CWP on the growth and differentiation of MC3T3-E1 cells. CWP significantly increased the viability and proliferation of MC3T3-E1 cells. CWP activated intracellular alkaline phosphatase (ALP) activity in MC3T3-E1 cells. In addition, CWP increased the mineralized nodules in MC3T3-E1 cells. Furthermore, CWP increased the expression of genes such as Runx2, ALP, OPN and OCN associated with osteoblast growth and differentiation in a dose-dependent manner.

ROS Scavenging Effect and Cell Viability of Opuntia humifusa Extract on Osteoblastic MC3T3-E1 Cells (천년초 추출물이 조골세포의 증식과 ROS소거능에 미치는 영향)

  • Hwang, Hyun-Jung;Jung, Bok-Mi;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1752-1760
    • /
    • 2011
  • In this study, the effect of the Opuntiahumifusa extracts on proliferation, alkaline phosphatase (ALP) activity, collagen synthesis and ROS level of a cell was investigated using an osteoblast. Opuntiahumifusawas separated intoOpuntiahumifusapeel (OH-P), seed (OH-Se) and stem (OH-St).These were subjected to extraction by using hot water and ethanol. The proliferation of the MC3T3-E1 osteoblastic cells that were treated with OH-Se water extract were increased by approximately 120%. Regarding the effects of OH-Se on ALP activity, the $50{\mu}g/ml$ ethanol extract group showed the highest activity. The synthesis of collagen increased significantly in response to treatment with OH-Se water extract. The ROS scavenging effects of Opuntiahumifusawere investigated for involvement of oxidativedamage, cell culture and staining. Also, when OH-Se water extract $100{\mu}g/ml$ was added, the ROS level decreased by 54%. These results indicate that Opuntiahumifusa extracts have an anabolic effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases.

Regulation of ADAMTS-2 by 1,25-Dihydroxyvitamin D3 in Osteoblastic Cells

  • Jeon, Eun-Young;Kim, Hyun-Man;Lee, Seung-Bok
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.93-98
    • /
    • 2006
  • Biosynthetic processing of fibrillar procollagens is essential for producing mature collagen monomers that polymerize into fibrils by a self-assembly process. The metalloproteinase ADAMTS-2 is the major enzyme that processes the N-propeptide of type I procollagen in the skin and also of type II and type III procollagens. Mutations in the ADAMTS-2 gene cause dermatospraxis in animals and Ehlers-Danlos syndrome VIIC in humans, both of which are characterized by the accumulation of type I pN-collagen and the formation of abnormal collagen fibrils in the skin. Despite its importance in procollagen processing, little is known about the regulation of ADAMTS-2 expression. Here, we demonstrate that ADAMTS-2 can be regulated by 1,25-dihydroxyvitamin D3, an inducer of type I procollagen synthesis. This steroid hormone induced ADAMTS-2 mRNA ${\sim}3-fold$ in MG-63 human osteosarcoma cells and MC3T3-E1 murine osteoblastic cells. This induction was dose- and time-dependent in MG-63 cells. In contrast, secreted ADAMTS-2 protein was increased only 1.4-fold with 1,25-dihydroxyvitamin D3. Finally, 1,25-dihydroxyvitamin D3 in the presence of ascorbate increased levels of secreted ADAMTS-2 1.9-fold over ascorbate treatment alone, which did not appreciably change ADAMTS-2 expression. These data indicate that the regulation of ADAMTS-2 is coupled with the synthesis of type I procollagen through 1,25-dihydroxyvitamin D3 signaling and may involve translational or posttranslational control.

Response of osteoblast-like cells cultured on zirconia to bone morphogenetic protein-2

  • Han, Seung-Hee;Kim, Kyoung-Hwa;Han, Jung-Seok;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.227-233
    • /
    • 2011
  • Purpose: The aim of this study was to compare osteoblast behavior on zirconia and titanium under conditions cultured with bone morphogenetic protein-2. Methods: MC3T3-E1 cells were cultured on sandblasted zirconia and sandblasted/etched titanium discs. At 24 hours after seeding MC3T3-E1, the demineralized bone matrix (DBM) gel alone and the DBM gel with bone morphogenetic protein-2 (BMP-2) were added to the culture medium. The surface topography was examined by confocal laser scanning microscopy. Cellular proliferation was measured at 1, 4, and 7 days after gel loading. Alkaline phosphatase activity was measured at 7 days after gel loading. The mRNA expression of ALPase, bone sialoprotein, type I collagen, runt-related transcription factor 2 (Runx-2), osteocalcin, and osterix were evaluated by real-time polymerase chain reaction at 4 days and 7 days. Results: At 1, 4, and 7 days after loading the DBM gel alone and the DBM gel with BMP-2, cellular proliferation on the zirconia and titanium discs was similar and that of the groups cultured with the DBM gel alone and the DBM gel with BMP-2 was not significantly different, except for titanium with BMP-2 gel. ALPase activity was higher in the cells cultured with BMP-2 than in the other groups, but there was no difference between the zirconia and titanium. In ALPase, bone sialoprotein, osteocalcin, Runx-2 and osterix gene expression, that of cells on zirconia or titanium with BMP-2 gel was much more highly increased than titanium without gel at day 7. The gene expression level of cells cultured on zirconia with BMP-2 was higher than that on titanium with BMP-2 at day 7. Conclusions: The data in this study demonstrate that the osteoblastic cell attachment and proliferation of zirconia were comparable to those of titanium. With the stimulation of BMP-2, zirconia has a more pronounced effect on the proliferation and differentiation of the osteoblastic cells compared with titanium.

Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study

  • Lee, Hyo-Jung;Lee, Jaden;Lee, Jung-Tae;Hong, Ji-Soo;Lim, Bum-Soon;Park, Hee-Jung;Kim, Young-Kwang;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. Results: Group C presented the lowest water contact angle ($62.89{\pm}5.66{\theta}$), highest surface energy ($45{\pm}1.2mN/m$), and highest surface roughness ($Ra=22.351{\pm}2.766{\mu}m$). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. Conclusions: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.

Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3-E1 cells

  • Cho, Young-Eun;Lomeda, Ria-Ann R.;Ryu, Sang-Hoon;Lee, Jong-Hwa;Beattie, John H.;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 2007
  • Trace mineral studies involving metal ion chelators have been conducted in investigating the response of gene and protein expressions of certain cell lines but a few had really focused on how these metal ion chelators could affect the availability of important trace minerals such as Zn, Mn, Fe and Cu. The aim of the present study was to investigate the availability of Zn for the treatment of MC3T3-E1 osteoblast-like cells and the availability of some trace minerals in the cell culture media components after using chelexing resin in the FBS and the addition of N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN, membrane-permeable chelator) and diethylenetriaminepentaacetic acid (DTPA, membrane-impermeable chelator) in the treatment medium. Components for the preparation of cell culture medium and Zn-treated medium have been tested for Zn, Mn, Fe and Cu contents by atomic absorption spectrophotometer or inductively coupled plasma spectrophotometer. Also, the expression of bone-related genes (ALP, Runx2, PTH-R, ProCOL I, OPN and OC) was measured on the cellular Zn depletion such as chelexing or TPEN treatment. Results have shown that using the chelexing resin in FBS would significantly decrease the available Zn (p<0.05) $(39.4{\pm}1.5{\mu}M\;vs\;0.61{\pm}10.15{\mu}M)$ and Mn (p<0.05) $(0.74{\pm}0.01{\mu}M\;vs\;0.12{\pm}0.04{\mu}M)$. However, levels of Fe and Cu in FBS were not changed by chelexing FBS. The use of TPEN and DTPA as Zn-chelators did not show significant difference on the final concentration of Zn in the treatment medium (0, 3, 6, 9, $12{\mu}M$) except for in the addition of higher $15{\mu}M\;ZnCl_2$ which showed a significant increase of Zn level in DTPA-chelated treatment medium. Results have shown that both chelators gave the same pattern for the expression of the five bone-related genes between Zn and Zn+, and TPEN-treated experiments, compared to chelex-treated experiment, showed lower bone-related gene expression, which may imply that TPEN would be a stronger chelator than chelex resin. This study showed that TPEN would be a stronger chelator compared to DTPA or chelex resin and TPEN and chelex resin exerted cellular zinc depletion to be enough for cell study for Zn depletion.

HSP27 CONTRIBUTES TO ESTROGEN REGULATION OF OSTEOBLAST APOPTOSIS (조골세포 세포사멸의 Estrogen 조절에 대한 Hsp27의 영향에 관한 연구)

  • Jang, Hyon-Seok;Eune, Jung-Ju;Rim, Jae-Suk;Kwon, Jong-Jin;Choi, Cheol-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.323-330
    • /
    • 2004
  • Estrogen may promote osteoblast/osteocyte viability by limiting apoptotic cell death. We hypothesize that hsp27 is an estrogen- regulated protein that can promote osteoblast viability by increasing osteoblast resistance to apoptosis. The purpose of this study was to determine the effect of estrogen treatment and heat shock on $TNF{\alpha}$ - induced apoptosis in the MC3T3-E1 cell line. Cells were treated with 0 - 100 nM $17{\beta}$ estradiol (or ICI 182780) for 0 - 24 hours before heat shock. After recovery, apoptosis was induced by treatment with 0 - 10 ng/ml TNF${\alpha}$. Hsp levels were evaluated by Northern and Western analysis using hsp27, hsp47, hsp70c and hsp70i - specific reagents. Apoptosis was revealed by in situ labeling with Terminal Deoxyribonucleotide Transferase (TUNEL). A 5 - fold increase in hsp27 protein and mRNA was noted after 5 hours of treatment with 10 - 20 nM $17{\beta}$ estradiol prior to heat shock. Increased abundance of hsp47, hsp70c or hsp70i was not observed. TUNEL indicated that estrogen treatment also reduced (50%) MC3T3-E1 cell susceptibility to $TNF{\alpha}$ - induced apoptosis. Treatment with hsp27-specific antisense oligonucleotides prevented hsp27 protein expression and abolished the protective effects of heat shock and estrogen treatment on $TNF{\alpha}$- induced apoptosis. Hsp27 is a determinant of osteoblast apoptosis, and estrogen treatment increases hsp27 levels in cultured osteoblastic cells. Hsp27 contributes to the control of osteoblast apoptosis and may be manipulated by estrogenic or alternative pathways for the improvement of bone mass.

Effects of Solidago virga-aurea var. gigantea Miq. Root Extracts on the Activity and Differentiation of MC3T3- E1 Osteoblastic Cell (미역취(Solidago virga-aurea var. gigantea Miq.) 뿌리 추출물이 MC3T3-E1 조골세포의 활성과 분화에 미치는 영향)

  • Park, Jung-Hyun;Lee, Ji-Won;Kim, Hyun-Jeong;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.929-936
    • /
    • 2005
  • The purpose of this study was to examine the ability of alkaline phosphatase (ALP) synthesis of MC3T3-E1 cells when above edible sources, Solidago virga-aurea var. gigantea Miq. root (SVR) extracts, were supplimented. MC3T3-E1 cells were cultured with $\alpha-MEM$(vehicle control), dexamethasone and genestein (positive control), and SVR extracts for 27 days. The effects of SVR MeOH extracts and its fractions on cell proliferation were measured by MTT assay. At 10, 100${\mu}g/mL$ of SVR methanol extract treated, that were elevated of cell proliferation to 140 and $120\%$ via vehicle control, respectively. And then ALP synthesis was measured by spectrophotometer for enzyme activity and by naphthol AS-BI staining for morphometry at 3, 9, 18, and 27th day. As the results, every extracts and fractions were promoted ALP activity by time course at 1, 10, 100${\mu}g/mL$, except n-hexane and chloroform fractions. Remarkably, the MeOH extracts were increased ALP activity more than 4.4 times compared with vehicle control, 2.2 times via positive control at 27th day (p<0.05). The SVR MeOH extracts treated cells, especially at a concentration of 10${\mu}g/mL$, showed remarkably higher than vehicle-treated control cells of mineralization which were checked by Alizarin red staining. These results indicate that SVR methanol extract have an induction ability of proliferation and differentiation on osteoblast.

Interactions of Low-Temperature Atmospheric-Pressure Plasmas with Cells, Tissues, and Biomaterials for Orthopaedic Applications

  • Hamaguchi, Satoshi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.20-20
    • /
    • 2011
  • It has been known that, under certain conditions, application of low-temperature atmospheric-pressure plasmas can enhance proliferation of cells. In this study, conditions for optimal cell proliferation were examined for various cells relevant for orthopaedic applications. Plasmas used in our experiments were generated by dielectric barrier discharge (DBD) with a helium flow (of approximately 3 litter/min) into ambient air at atmospheric pressure by a 10 kV~20 kHz power supply. Such plasmas were directly applied to a medium, in which cells of interest were cultured. The cells examined in this study were human synoviocytes, rat mesenchymal stem cells derived from bone marrow or adipose tissue, a mouse osteoblastic cell line (MC3T3-E1), a mouse embryonic mesenchymal cell line (C3H-10T1/2), human osteosarcoma cells (HOS), a mouse myoblast cell line (C2C12), and rat Schwann cells. Since cell proliferation can be enhanced even if the cells are not directly exposed to plasmas but cultured in a medium that is pre-treated by plasma application, it is surmised that long-life free radicals generated in the medium by plasma application stimulate cell proliferation if their densities are appropriate. The level of free radical generation in the medium was examined by dROMs tests and correlation between cell proliferation and oxidative stress was observed. Other applications of plasma medicine in orthopaedics, such as plasma modification of artificial bones and wound healing effects by direct plasma application for mouse models, will be also discussed. The work has been done in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  • PDF

Investigation of effect of zirconia on osseointegration by surface treatments (지르코니아 표면처리가 골유착에 미치는 영향)

  • Jeong, Jin-Woo;Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • Purpose: The aim of this study was to investigate effect of zirconia on osseointegration and Surface appearance by surface treatments using various acid solution. Materials and Methods: The prepared zirconia disks were treated with hydrofluoric acid solution and photo-assisted etching under various condition. The surface was analyzed by SEM and the surface roughness was analyzed by using surface profiler. The osteogenic effect of MC3T3-E1 cells was assessed via fluorescent staining observation and reverse transcriptase-polymerase chain reaction (RT-PCR). Results: Various roughness were obtained according to the surface treatment method. The surface roughness increased in the group treated with hydrofluoric acid solution, but that had week network structure. In the method using photo-assisted etching, the surface roughness increased in micro units. Cell reaction showed better results in the photo-assisted etching group than in the hydrofluoric acid-treated group (P < 0.05). And it showed even osteoblastic cell distribution in photo-assisted etching group. Conclusion: As a result, the photo-assisted etching method is more effective than the simple acid solution treatment for zirconia treatment for osseointegration.