• Title/Summary/Keyword: osmolality

Search Result 196, Processing Time 0.022 seconds

Stress Responses of Cultured Fishes Elicited by Water Level Reduction in Rearing Tank and Fish Transference during Selection Process (양식어류의 선별과정중 수심감소와 어류의 수조이동에 따른 스트레스 반응)

  • HUR Jun Wook;CHANG Young Jin;LIM Han Kyu;LEE Bok Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.465-472
    • /
    • 2001
  • The effects of water level reduction in rearing tank and fish transference during fish selection process on the stress response (hematological factors, cortisol, glucose, lactic acid and osmolality) of tank-reared olive flounder Paralichthys olivaceus of large (FL), small (FS) and Japanese croaker, Nibea japonica (JC) were examined in running seawater culture system. The water level of rearing unit was lowered from 33 cm to 8 cm in the course of 2 minutes in the water level reduction experiment. The fish were removed from rearing tank (12 ton) to 450 L tank in 30 seconds after capture in the fish transference experiment, In water level reduction, the hematocrit of FL was significantly increased from $14.6\%$ at beginning to $23.5\%$ after 10 hours, However, it decreased to the value of beginning after 46 hours. Plasma cortisol concentration of FL was the highest concentration (13.7 ng/mL) after 22 hours, but it decreased to 4.0 ng/mL at the end of experiment. Cortisol concentration of FS did not show any significant difference during the experiment. The cortisol concentration of JC were significantly higher at 4 hours (282.3 ng/mL) and 22 hours (350.5 ng/mL), Glucose concentration of JC was the highest (138.0 mg/dL) at 22 hours. Lactic acid concentration was not different between experimental groups. In the fish transference experiment, red blood cell of FL was increased from $1.9\times10^6\;cell/{\mu}\;L\;to\;4.2\times10^6\;cell/{\mu}L$ in 24 hours. Blood hemoglobin of JC were significantly elevated in 24 hours. At 1 hour after transference, plasma cortisol concentrations in both fish species were increased to 95.3 ng/mL in FL and 175.5 ng/mL in JC. Glucose concentration of JC was increased to 132.5 mg/dL at 1 hour, 129.5 mg/dL at 3 hours after transference.

  • PDF

Effects of Culture Medium and Osmolarity on In Vitro Maturation of Follicular Oocytes and Development of Parthenogenetic Embryos in Porcine (배양액과 삼투압이 돼지 난포란의 성숙과 단위발생란의 발육에 미치는 영향)

  • Kim M. K.;Kwon D. J.;Park C. K.;Yang B. K.;Cheong H. T.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.3
    • /
    • pp.169-174
    • /
    • 2005
  • This study was comducted to examine the effects of culture medium, and the osmolarity and osmotic change of the culture medium on in vitro maturation of porcine oocytes and developement of porcine parthenogenetic embryos. In Experiment 1, cumulus-oocyte complexes were matured in NCSU-23, mWM and mKRB, respectively, There was no difference in maturation rate($62.1\~71.3\%$) among groups. In Experiment 2, matured oocytes in each medium were activated and cultured for 6 days in the same media. Blastocyst formation rate was higher in NCSU-23($22.9\%$) than those of others($0\~0.6\%$, P<0.05). In Experiment 3, parthenogenetic embryos were cultured for 6 days in NCSU-23 with different osmolarity(300, 280 and 256 mOsmols) adjusted by NaCl. There were no differences in development rates to the blastocyst stage($11.0\~14.4\%$) among groups. In Experiment 4, activated oocytes were cultured for 2 days in NCSU-23 with 300, 280 and 256 mOsmols and then transferred to increased or decreased osmotic condition. Blastocyst formation rate was higher in a group which was transferred from the higher osmotic condition to the lowe. osmotic condition($21.0\%$) than a contrary group( $11.8\%$, (P<0.05). This result shows that the culture medium and the osmolarity of the culture medium affect the development of porcine parthenogenetic embryos, and the change of osmolarity from the higher condition to the lower condition at a certain developmental stage can enhance the development of porcine parthenogenetic embryos.

Adaptations and Physiological Characteristics of Three Chenopodiaceae Species under Saline Environments (명아주과 3종 식물의 염 환경에 대한 적응특성의 비교)

  • Kim, Jin-A;Choo, Yeon-Sik;Lee, In-Jung;Bae, Jeong-Jin;Kim, In-Sook;Choo, Bo-Hye;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.25 no.3 s.107
    • /
    • pp.171-177
    • /
    • 2002
  • Three species of Chenopodiaceae, i.e. Suaeda japonica, Salicomia herbacea, Beta vulgaris var. cicla, were investigated to compare the physiological characteristics through ionic balances and osmoregulations under different environmental salt gradients. Plants were harvested in two weeks from treatments with salt gradients(0, 50, 100, 200 and 400 mM NaCl) and mineral nutrition gradients(1/1, l/5, 1/10 dilutions of Hoagland solution). Plants were analyzed for growth responses, ionic balances, osmolalities, conductivities, glycinebetaine and proline contents quantitatively. Three plants of Chenopodiaceae accumulated salts into tissues unlike some salt sensitive species, and showed unique adaptation patterns to overcome saline environments, i.e. strong growth stimulation for Salicomia herbacea, growth negative tolerance for Suaeda japonica, and growth positive tolerance for Beta vulgaris var cicla. The absorption of inorganic $Ca^{2+}$ ions was inhibited remarkably due to the excess uptake of $Na^+$ with increasing salinity. The $K^+$ content in plants was significantly reduced with increasing salinity. Total nitrogen content was reduced as mineral nutritions and salinity increases. Conductivity and osmolality increased with increasing salinity regardless of mineral nutritions. The ranges of glycinebetaine and proline contents were $0.2{\sim}2.5{\mu}M/g$ plant water and $0.1{\sim}0.6{\mu}M/g$ plant water, respectively.

Water and Electrolyte Metabolism of Korean Buddhist Nuns (한국여승(韓國女僧)의 수분(水分) 및 전해질대사(電解質代謝))

  • Choi, Hung-Kyo;Yoon, Jin-Sook;Choo, Young-Eun;Lee, Won-Jung
    • The Korean Journal of Physiology
    • /
    • v.16 no.2
    • /
    • pp.187-193
    • /
    • 1982
  • The relationship between water and electrolyte metabolism, and dietary intake were studied in 45 healthy Buddhist nuns who were vegetarians aged 20-34, and 28 nursing students aged 20-22 who stayed at the dormitory of Kyungpook Medical School in the Fall, 1981. The Buddhist nuns obtained significantly higher carbohydrate and total caloric intakes but significantly lower protein and lipid intakes than the female students. The Buddhist nuns excreted significantly higher urine output($1,697{\pm}68\;ml/day$, p<0. 05) and lower osmolality ($616{\pm}18\;mOsm/kg\;H_2O$, p<0.05) than the students ($1,505{\pm}67\;ml/day$ and $688{\pm}36\;mOsm/kg\;H_2O$). However, both groups excreted similar amounts of urinary $Na^+$, $K^+$ and total osmolar contents. Free water clearance of the Buddhist nuns was higher(p<0.05) than that of the students but the osmolar clearance was about the same in the two groups. Daily urine output showed good correlation with Na output (r=0.76) and osmolar clearance but not with free water clearance. Both groups showed similar values of plasma concentration of creatinine, daily excretion of creatinine and clearance. Urinary excretion of urea for Buddhist nuns was 6.4 g/day, and was significantly higher than that of the students (5.1g/day).

  • PDF

Quality Characteristics, Carbon Dioxide, and Ethylene Production of Asparagus (Asparagus officinalis L.) Treated with 1-Methylcyclopropene and 2-Chloroethylphosphonic Acid during Storage (아스파라거스에서 1-MCP와 CEPA 처리에 따른 CO2 및 에틸렌 발생과 품질특성)

  • Lee, Jung-Soo
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.675-686
    • /
    • 2015
  • Asparagus (Asparagus officinalis L.) needs proper post-harvest treatment to prolong its storage life. This study investigated the effect of 1-methylcyclopropene (1-MCP) on the quality and storage life of asparagus. Fresh-harvested asparagus was treated with 1-MCP ($1mg{\cdot}L^{-1}$), CEPA($10mg{\cdot}L^{-1}$), and 1-MCP($1mg{\cdot}L^{-1}$) + CEPA($10mg{\cdot}L^{-1}$) and compared with an untreated control. The carbon dioxide ($CO_2$) production, ethylene production, and morphological characteristics of the preserved asparagus were observed. The flow-system and the static-type measurement methods for ethylene and $CO_2$ production (respiration rate) were used. Weight loss, respiration rate, degree of freshness, and ethylene production were monitored during storage at $7^{\circ}C$. The results further showed that CEPA (2-chloroethylphosphonic acid) treatment had greater effects on $CO_2$ and ethylene production than using the 1-MCP process. The asparagus treated with CEPA or 1-MCP + CEPA had significantly increased the ethylene production rate compared to the control or using only 1-MCP during storage. There were no evident changes in the respiration rate of asparagus under 1-MCP treatment as compared with the control. Using the flow-system, slight differences in the rates of $CO_2$ and ethylene production were noted as compared to using the static type. Findings showed that in using the flow-system, asparagus manifested clearer results as compared with the static type. Weight loss in asparagus was significantly lower in control and 1-MCP treated samples than in those treated with CEPA. Likewise, the $CO_2$ and ethylene production of the CEPA treated samples significantly increased. The 1-MCP treatment reduced the effects of CEPA on weight loss, soluble solids content, and osmolality. The effect was not observed with exogenous ethylene as CEPA treatment had no visible effect as compared to the untreated group. Thus, 1-MCP treatment of asparagus could slightly reduce damage to the quality of asparagus during its distribution where ethylene gas is produced. Therefore, this study suggests that 1-MCP treatment can reduce the damage induced by ethylene gas on asparagus in poor distribution environments.

A Study on an Effective Decellularization Technique for a Xenograft Cardiac Valve: the Effect of Osmotic Treatment with Hypotonic Solution (이종 심장 판막 이식편에서 효과적인 탈세포화 방법에 관한 연구; 저장성 용액(hypotonic solution)의 삼투압 처치법 효과)

  • Sung, Si-Chan;Kim, Yong-Jin;Choi, Sun-Young;Park, Ji-Eun;Kim, Kyung-Hwan;Kim, Woong-Han
    • Journal of Chest Surgery
    • /
    • v.41 no.6
    • /
    • pp.679-686
    • /
    • 2008
  • Background: Cellular remnants in the bioprosthetic heart valve are known to be related to a host's immunologic response and they can form the nidus for calcification. The extracellular matrix of the decellularized valve tissue can also be used as a biological scaffold for cell attachment, endothelialization and tissue reconstitution. Thus, decellularization is the most important part in making a bioprosthetic valve and biological caffold. Many protocols and agents have been suggested for decellularization, yet there ave been few reports about the effect of a treatment with hypotonic solution prior to chemical or enzymatic treatment. This study investigated the effect of a treatment with hypotonic solution and the appropriate environments such as temperature, the treatment duration and the concentration of sodium dodecylsulfate (SDS) for achieving proper decellularization. Material and Method: Porcine aortic valves were decellularized with odium dodecylsulfate at various concentrations (0.25%, 0.5%), time durations (6, 12, 24 hours) and temperatures ($4^{\circ}C$, $20^{\circ}C$)(Group B). Same the number of porcine aortic valves (group A) was treated with hypotonic solution prior to SDS treatment at the same conditions. The duration of exposure to the hypotonic solution was 4, 7 and 14 hours and he temperature was $4^{\circ}C$ and $20^{\circ}C$, respectively. The degree of decellularization was analyzed by performing hematoxylin and eosin staining. Result: There were no differences in the degree of decellularization between the two concentrations (0.25% 0.5%) of SDS. Twenty four hours treatment with SDS revealed the best decellularization effect for both roups A and B at the temperature of $4^{\circ}C$, but there was no differences between the roups at $20^{\circ}C$. Treatment with hypotonic solution (group A) showed a better ecellularization effect at all the matched conditions. Fourteen hours treatment at $4^{\circ}C$ ith ypotonic solution prior to 80S treatment revealed the best decellularization effect. The treatment with hypotonic solution at $20^{\circ}C$ revealed a good decellularization effect, but his showed significant extracellular matrix destruction. Conclusion: The exposure of porcine heart valves to hypotonic solution prior to SDS treatment is highly effective for achieving decellularization. Osmotic treatment with hypotonic solution should be considered or achieving decellularization of porcine aortic valves. Further study should be carried out to see whether the treatment with hypotonic solution could reduce the exposure duration and concentration of chemical detergents, and also to evaluate how the structure of the extracellular matrix of the porcine valve is affected by the exposure to hypotonic solution.