• Title/Summary/Keyword: oscillatory function

Search Result 74, Processing Time 0.02 seconds

LOW-DRER $H_\infty$ CONTROLLERS WITH THE MIXWED SENSITIVITY PROBLEMS

  • Qi, Run-De;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.455-460
    • /
    • 1994
  • This paper presents a simple methodology for reducing the order of H$_{\infty}$ controllers in the mixed sensitivity control problems. The key point of this methodology is to transform the generalized plant expression to new one, where the control object and the weighting functions for the sensitivity function may have some poles on the imaginary axis. So that, this methodology makes it possible to use the standard method to solve the general H$_{\infty}$ design problems about the mixed sensitivity problems, even for a servo system or a oscillatory system. We derive that the order of H$_{\infty}$ controllers designed by this methodology may be reduced to n$_{p}$ where n$_{p}$ is the order of the denominator of the control object. It is clear that n$_{p}$ is lower than n$_{p}$ + n$_{s}$, which is the order of H$_{\infty}$ controllers obtained by the ordinary H$_{\infty}$ design method up to now, where n$_{s}$ is the order of the denominator of the weighting function for sensitivity. Finally, a numerical example is given to illustrate the results..lts.ts..lts.lts.

  • PDF

Small and Large Deformation Rheological Behaviors of Commercial Hot Pepper-Soybean Pastes

  • Choi, Su-Jin;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.871-876
    • /
    • 2006
  • Rheological behavior of commercial hot pepper-soybean paste (HPSP) was evaluated in small amplitude oscillatory and steady shear tests. Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) as a function of angular frequency (${\omega}$), and shear stress (${\sigma}$) as a function of shear rate (${\gamma}$) data were obtained for 5 commercial HPSP samples. HPSP samples at $25^{\circ}C$ exhibited a non-Newtonian, shear-thinning flow behavior with high yield stresses and their flow behaviors were described by power law, Casson, and Herschel-Bulkley models. Time-dependent flow properties were also described by the Weltman, Hahn, and Figoni & Shoemaker models. Apparent viscosity over the temperature range of $5-35^{\circ}C$ obeyed the Arrhenius temperature relationship with activation energies (Ea) ranging 18.3-20.1 kJ/mol. Magnitudes of G' and G" increased with an increase in ${\omega}$, while ${\eta}^*$ decreased. G' values were higher than G" over the most of the frequency range (0.63-63 rad/sec), showing that they were frequency dependent. Steady shear viscosity and complex viscosity of the commercial HPSP did not fit the Cox-Merz rule.

Parametric Optimization Procedure for Robust Flight Control System Design

  • Tunik, Anatol A.;Ryu, Hyeok;Lee, Hae-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.95-107
    • /
    • 2001
  • This paper is devoted to the parameter optimization of unmanned aerial vehicle's (UAV) flight control laws. Optimization procedure is based on the ideas of mixed $H_2/H_{\infty}$ control of multi-model plants. By using this approach, some partial $H_2$-terms defining the performance of nominal and parametrically perturbed Flight Control System (FCS) responses to deterministic command signals in stochastic atmosphere as well as $H_{\infty}$-terms defining robustness of the FCS can be incorporated in the composite cost function. Special penalty function imposed on the location of closed-loop system's poles keeps the speed of response and oscillatory properties for both nominal and perturbed FCS in reasonable limits. That is the reason why this procedure may provide reasonable trade-off between the performance and robustness of FCS that are very important especially for UAV. Its practical importance is illustrated by case studies of lateral and longitudinal control of small UAV.

  • PDF

ON THE DIFFERENCE EQUATION $x_{n+1}=\frac{a+bx_{n-k}-cx_{n-m}}{1+g(x_{n-l})}$

  • Zhang, Guang;Stevic, Stevo
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.201-216
    • /
    • 2007
  • In this paper we consider the difference equation $$x_{n+1}=\frac{a+bx_{n-k}\;-\;cx_{n-m}}{1+g(x_{n-l})}$$ where a, b, c are nonegative real numbers, k, l, m are nonnegative integers and g(x) is a nonegative real function. The oscillatory and periodic character, the boundedness and the stability of positive solutions of the equation is investigated. The existence and nonexistence of two-period positive solutions are investigated in details. In the last section of the paper we consider a generalization of the equation.

The end effector of circadian heart rate variation: the sinoatrial node pacemaker cell

  • Yaniv, Yael;Lakatta, Edward G.
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.677-684
    • /
    • 2015
  • Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart's beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart's pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system.

Development of EMD-based Fault Diagnosis System for Induction Motor (EMD 기반의 유도 전동기 고장 진단 시스템 개발)

  • Kang, Jungsun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.675-681
    • /
    • 2014
  • This paper proposes a fault diagnosis system for an induction motor. This system uses empirical mode decomposition(EMD) to extract fault signatures and multi-layer perceptron(MLP) neural network to facilitate an accurate fault diagnosis. EMD can not only decompose a signal adaptively but also provide intrinsic mode functions(IMFs) containing natural oscillatory modes of the signal. However, every IMF does not represent fault signature, an IMF selection algorithm based on harmonics and their energy of each IMF is proposed. The selected IMFs are utilized for fault classification using MLP and this system shows approximately 98 % diagnosis accuracy for the fault vibration signal of the induction motor.

Improvement of Transient Response Charateristics of a Position Control Hydraulic Servosystem Using Observer (I) (관측기를 이용한 위치제어 유압 서어보 시스템의 과도응답 특성 개선 (I))

  • 이교일;조승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.781-788
    • /
    • 1987
  • The state variables estimated in an observer were useed in feedback control of a hydraulic servosystem to increase the system stability and to enhance the system performance. The nonlinear hydraulic servosystem with the inherent nonlinearities due to the square root function of flow equation, the Coulomb friction and so on, was modelled as a fourth order linear hydraulic servosystem. Also, a second order linear system was derived for the observer-controller design. For these models, a fourth order linear observer and a second order linear observer were constructed respectively to evaluate the performance of the observer-based hydraulic servosystem. The results obtained from series of simulation showed that the system which had shown oscillatory phenomenon under proportional control became stable with the same maximum acceleration and velocity that it had started under proportional control.

Simple Adaptive Position Control of a Hydraulic Cylinder-load System Driven by a Proportional Directional Control Valve (비례 방향제어 밸브에 의하여 구동되는 유압실린더-부하계의 단순 적응 위치제어)

  • Cho, Seung-Ho;Lee, Min-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.936-941
    • /
    • 2011
  • This paper deals with the issue of motion control of a single rod cylinder-load system using simple adaptive control (SAC) method. Prior to controller design, the experiment of open-loop response has been performed. Based on it, design parameters of transfer function are obtained and used for controller design. The effect of parallel feedforward compensator has been investigated by computer simulation, suppressing the oscillatory motion. Through experiments it is conformed that the SAC method gives good tracking performance compared to the PD control method.

Recognition of the Korean Character Using Phase Synchronization Neural Oscillator

  • Lee, Joon-Tark;Kwon, Yang-Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.347-353
    • /
    • 2004
  • Neural oscillator can be applied to oscillator systems such as analysis of image information, voice recognition and etc, Conventional learning algorithms(Neural Network or EBPA(Error Back Propagation Algorithm)) are not proper for oscillatory systems with the complicate input patterns because of its too much complex structure. However, these problems can be easily solved by using a synchrony characteristic of neural oscillator with PLL(phase locked loop) function and a simple Hebbian learning rule, Therefore, in this paper, it will introduce an technique for Recognition of the Korean Character using Phase Synchronization Neural Oscillator and will show the result of simulation.

Nonlinear FES Control of Knee Joint by Inversely Compensated Feedback System

  • Eom Gwang-Moon;Lee Jae-Kwan;Kim Kyeong-Seop;Watanabe Takashi;Futami Ryoko
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.302-307
    • /
    • 2006
  • The aim of applying Functional Electrical Stimulation (FES) is to restore a person's motor function by directly supplying the controlled electrical currents to the site of the paralyzed muscles. However, most clinically utilized FES systems have adapted an open-loop control scheme. Recently the closed-loop control scheme has been considered for setting up the FES system, but due to the inherent nonlinearities in the musculoskeletal system, the nonlinearities were not fully compensated and it caused the oscillatory responses for tracking the output variables. In this study, a nonlinear controller model that has two inverse compensation units is proposed with the compromising feedback linearization method and this will eventually be used to design the FES control system for stimulating a knee joint musculoskeletal system.