• 제목/요약/키워드: oscillator phase noise

Search Result 433, Processing Time 0.028 seconds

Improvement of Phase Noise Characteristics for Tuning Voltage in Voltage Controlled Oscillator using Coupled Microstrip Lines (결합 마이크로스트립 라인을 이용한 전압제어 발진기의 동조전압에 따른 위상잡음 특성 개선)

  • Ryu, Keun-Kwan;Shin, Dong-Hwan;Yom, In-Bok;Kim, Sung-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.513-518
    • /
    • 2010
  • Improvement of phase noise characteristics in a different approach of HEMT VCO (Voltage Controlled Oscillator) with coupled microstrip lines to tune the oscillating frequency is investigated. Two HEMT VCOs of 9.8GHz are manufactured in the same configuration except for the frequency tuning circuit in order to empirically demonstrate the phase noise reduction. Experimental result shows that phase noise reduction can be enhanced 8dBc/Hz at 100KHz offset frequency from carrier by frequency tuning circuit with coupled microstrip lines over the conventional VCO.

An InGaP/GaAs HBT Monolithic VCDRO with Wide Tuning Range and Low Phase Noise

  • Lee Jae-Young;Shrestha Bhanu;Lee Jeiyoung;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 2005
  • The InGaP/GaAs hetero-junction bipolar transistor(HBT) monolithic voltage-controlled dielectric resonator oscillator(VCDRO) is first demonstrated for a Ku-band low noise block down-converter(LNB) system. The on-chip voltage control oscillator core employing base-collector(B-C) junction diodes is proposed for simpler frequency tuning and easy fabrication instead of the general off-chip varactor diodes. The fabricated VCDRO achieves a high output power of 6.45 to 5.31 dBm and a wide frequency tuning range of ]65 MHz( 1.53 $\%$) with a low phase noise of below -95dBc/Hz at 100 kHz offset and -115 dBc/Hz at ] MHz offset. A]so, the InGaP/GaAs HBT monolithic DRO with the same topology as the proposed VCDRO is fabricated to verify that the intrinsic low l/f noise of the HBT and the high Q of the DR contribute to the low phase noise performance. The fabricated DRO exhibits an output power of 1.33 dBm, and an extremely low phase noise of -109 dBc/Hz at 100 kHz and -131 dBc/Hz at ] MHz offset from the 10.75 GHz oscillation frequency.

A Design and Fabrication of Low Phase Noise Frequency Synthesizer Using Dual Loop PLL (이중루프 PLL을 이용한 IMT-2000용 저 위상잡음 주파수 합성기의 설계 및 제작)

  • Kim, Kwang-Seon;Choi, Hyun-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2C
    • /
    • pp.191-200
    • /
    • 2002
  • A frequency synthesizer that can be used in IMT-2000 was designed and fabricated using dual loop PLL(Phase Locked Loop) in this paper. For improving phase noise characteristic two loops, reference loop and main loop, were divided. Phase noise was improved by transformed clamp type voltage controled oscillator and optimizing loop bandwidth in reference loop. And voltage controlled oscillator open loop gain in main loop. Fabricated the frequency synthesizer had 1.81GHz center frequency, 160MHz tuning range, 13.5dBm output power and -119.73dBc/Hz low phase noise characteristic.

Design and Fabrication of Low Phase-Noise Frequency Synthesizer using Dual Loop PLL for IMT-2000 (이중루프 PLL을 이용한 IMT-2000용 저위상잡음 주파수합성기의 설계 및 제작)

  • 김광선;최현철
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.163-166
    • /
    • 1999
  • In this paper, frequency synthesizer that can be used in IMT-2000 was designed and fabricated using dual loop PLL(Phase Locked Loop). For improving phase noise characteristic Voltage Controlled Oscillator was fabricated using coaxial resonator and eliminated frequency divider using SPD as phase detector and increased open loop gain. Fabricated frequency synthesizer had 1.82㎓ center frequency, 160MHz tuning range and -119.73㏈c/Hz low phase noise characteristic.

  • PDF

Design of the Voltage Controlled Oscillator for Low Voltage (저전압용 전압제어발진기의 설계)

  • Lee, Jong-In;Jung, Dong-Soo;Jung, Hak-Kee;Yoon, Young-Nam;Lee, Sang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2480-2486
    • /
    • 2012
  • The design of low voltage LC-VCO(LC Voltage Controlled Oscillator) has been presented to optimize the phase noise and power consumption for the block of frequency synthesis to satisfy WCDMA system specification in this paper. The parameters for minimum phase noise has been obtained in the region of design, using the lines of the tuning range and the excess gain in the plane of the inductance and the transconductance of MOS transistor to compensate the loss of LC-tank. As a result of simulation, the phase noise characteristics is -113dBc/Hz for offset of 1MHz. The optimum designed LC-VCO has been fabricated using the process of 0.25um CMOS. As a result of measurement for fabricated chip, the phase noise characteristics is -116dBc/Hz for offset of 1MHz. The power consumption is 15mW, and Kvco is 370MHz/V.

X-band Low Phase Noise Push-Push Oscillator Using Metamaterial Resonator (Metamaterial 공진기를 이용한 레이더 송. 수신기용 X-대역 고출력. 저위상 잡음 Push-Push 발진기)

  • Kim, Yang-Hyun;Seo, Chul-Hun;Ha, Sung-Jae;Lee, Bok-Hyung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.1-5
    • /
    • 2009
  • In this paper, low phase noise push-push oscillator (OSC) using the metamaterial resonator for missile defense systems and satellite communication was design and implemented. The metamaterial resonator has the large coupling coefficient value, which makes a high Q value, and has reduced phase noise of OSC. The OSC with 1.8 V power supply has phase noise of -117 dBc/Hz @100 kHz in the 12 GHz. When it has been compared with metamaterial resonator and coventional spiral resonator, the reduced Q value has been -29.7 dB and -47.6 dB respectively. This low phase noise OSC using metamaterial resonator could be available to a OSC in X-band.

K-Band Low Phase Noise Push Push OSC Using Metamaterial Resonator (Metamatrial Resonator를 이용한 K-Band 저위상 잡음 Push Push OSC 설계)

  • Shim, Woo-Seok;Lee, Jong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.67-71
    • /
    • 2012
  • In this paper, a push-push oscillator at K-band with a double H-shape metamaterial resonator (DHMR) based on high-Q is proposed with metamaterial structure to improve the phase noise and output power. The proposed oscillator shows low phase noise and high output power. DHMR is designed to be high-Q at resonance frequency through strong coupling of E-field. oscillators which are combined in push-push structure improve output power. The propose push-push oscillator shows the output power of 3.1 dBm, the fundamental signal suppression of -23.7 dBc and phase noise of -116.28 dBc at 100 kHz offset frequency and 20.20 GHz center frequency.

The Tripler Differential MMIC Voltage Controlled Oscillator Using an InGaP/GaAs HBT Process for Ku-band Application

  • Yoo Hee-Yong;Lee Rok-Hee;Shrestha Bhanu;Kennedy Gary P.;Park Chan-Hyeong;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.92-97
    • /
    • 2006
  • In this paper, a fully integrated Ku-band tripler differential MMIC voltage controlled oscillator(VCO), which consists of a differential VCO core and two triplers, is developed using high linearity InGaP/GaAs HBT technology. The VCO core generates an oscillation frequency of 3.583 GHz, an output power of 3.65 dBm, and a phase noise of -96.7 dBc/Hz at 100 kHz offset with a current consumption of 30 mA at a supply voltage of 2.9 V. The tripler shows excellent side band rejection of 23 dBc at 3 V and 12 mA. The tripler differential MMIC VCO produces an oscillation frequency of 10.75 GHz, an output power of -13 dBm and a phase noise of -89.35 dBc/Hz at 100 kHz offset.

Low-Phase Noise Oscillator Using Substrate Integrated Waveguide and Complementary Split Ring Resonator (기판 집적형 도파관(SIW)과 Complementary Split Ring Resonator(CSRR)로 구현한 저위상 잡음 발진기 설계)

  • Park, Woo-Young;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.468-474
    • /
    • 2012
  • A low phase-noise microwave oscillator is presented by a substrate integrated waveguide(SIW) loading a complementary split ring resonator(CSRR) in this paper. The unloaded $Q$-factor of the SIW cavity is increased by loading a complementary split ring resonator(CSRR) and its value exhibits 1960. It is theoretically and experimentally demonstrated that the proposed circuit generates 11.3 dBm of output power at 9.3 GHz and a phase-noise of -127.9 dBc/Hz at 1-MHz offset.

A Dielectric Resonator Oscillator for DSRC with Improved Phase Noise Characteristic (위상잡음 특성을 개선한 DSRC용 운전체 공진 발진기)

  • Lee Young-Joon;Kim Hyun-Jin;Hong Ui-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • In this paper, a DRO (Dielectric Resonator Oscillator) with high stability in DSRC(Dedicated Short Range Communication) is designed and fabricated. The DRO shows the phase noise characteristic of -109.3 dBc/Hz at 100 kHz offset from the fundamental frequency. The output power of 11.53 dBm, and the second harmonic suppression of 55.33 dBc for the DRO are obtained. This DRO with high stability of the phase noise characteristic can be used for the system in DSRC.

  • PDF