Browse > Article
http://dx.doi.org/10.5515/KJKIEES.2012.23.4.468

Low-Phase Noise Oscillator Using Substrate Integrated Waveguide and Complementary Split Ring Resonator  

Park, Woo-Young (School of Electrical and Electronics Engineering, Chung-Ang University)
Lim, Sung-Joon (School of Electrical and Electronics Engineering, Chung-Ang University)
Publication Information
Abstract
A low phase-noise microwave oscillator is presented by a substrate integrated waveguide(SIW) loading a complementary split ring resonator(CSRR) in this paper. The unloaded $Q$-factor of the SIW cavity is increased by loading a complementary split ring resonator(CSRR) and its value exhibits 1960. It is theoretically and experimentally demonstrated that the proposed circuit generates 11.3 dBm of output power at 9.3 GHz and a phase-noise of -127.9 dBc/Hz at 1-MHz offset.
Keywords
Substrate Integrated Waveguide(SIW); Complementary Split Ring Resonator(CSRR); Oscillator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. -G. Hwang, J. -S. Lee, J. -H. Kim, N. -H. Myung, and J. -I. Song, "Simple K-band ring resonator VCO using fully automated laser-trimming", IEEE Microw. Wireless Compon. Lett., vol. 13, no. 6, pp. 229-231, Jun. 2003.   DOI
2 C. G. Hwang, N. H. Myung, "Novel methos for phase noise reduction and harmonic suppression in a planar oscillator circuit based on split ring resonators", Asia-Pacific Microw. Conf., APMC 2006, pp. 619-622, Dec. 2006.
3 Y. Cassivi, K. Wu, "Low cost microwave oscillator using substrate integrated waveguide cavity", IEEE Microw. Wireless Compon. Lett., vol. 13, no. 2, Feb. 2003.
4 J. Xu, K. Wu, "A subharmonic self-oscillating mixer using SIW cavity for millimeter application", 2005 IEEE MTT-S International Microw. Symp. Dig., Jun. 2005.
5 F. J. M. Farley, J. K. Vij, A. Kocot, U. M. S. Murthy, and M. Burgess, "Mechanicalload cell based on cavity-controlled microwave oscillator", IEEE Trans. Microw. Theory Tech., vol. 39, no. 9, pp. 1611-1616, Sep. 1991.   DOI   ScienceOn
6 J. Esteban, C. C. Penalosa, J. E. Page, T. M. Martin- Guerrero, and E. Marquez-Segura, "Simulation of negative permittivity and negative permeability by means of evanescent waveguide modes-theory and experiment", IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1506-1514, Apr. 2005.   DOI
7 D. Deslandes, K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters", IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593-596, Feb. 2003.   DOI   ScienceOn
8 Y. Zhang, W. Hong, K. Wu, J. Chen, and H. Tang, "Novel substrate integrated waveguide cavity filters with defected ground structure", IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1280-1287, Apr. 2005.   DOI
9 Z. Hao, W. Hong, J. Chen, X. Chen, and K. Wu, "Compact super-wide bandpass substrate integrated waveguide(SIW) filters", IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005.   DOI
10 J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, "A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies", IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2925-2936, Jul. 2006.   DOI
11 D. B. Leeson, "A simple model of feedback oscillator noise spectrum", Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
12 L. -H. Hsieh, K. Chang, "High-efficiency piezoelectric- transducer tuned feedback microstrip ringresonator oscillators operating at high resonant frequencies", IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1141-1145, Nov. 2003.   DOI   ScienceOn
13 R. Marques, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split ring resonator-loaded metallic waveguides", Phys. Rev. Lett., pp. 183901-183904, Oct. 2002.
14 G. Kondratev, A. I. Smirnov, "Left-handed-media simulation and transmission of EM waves in subwavelength split ring resonator-loaded metallic waveguides", Phys. Rev. Lett., no. 24, pp. 249401-1, Dec. 2003.
15 R. Marques, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split ring resonatorloaded metallic waveguides", Phys. Rev. Lett., no. 24, pp. 249401-2, Dec. 2003.
16 Y. Komatsu, Y. Murakami, "Coupling coefficient between microstrip line and dielectric resonator", IEEE Trans. Microw. Theory and Tech., vol. MTT-31, pp. 34-40, Jan. 1983.
17 M. E. Tobar, E. N. Ivanov, R. A. Woode, J. H. Searls, and A. G. Mann, "Low noise 9-GHz sapphire resonator-oscillator with thermoelectric temperature stabilization at 300 Kelvin", IEEE Microw. Guided Wave Lett., vol. 5, no. 4, pp. 108-110, Apr. 1995.   DOI   ScienceOn
18 J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena", IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2075-2084, Nov. 1999.   DOI   ScienceOn
19 F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative- $\varepsilon$ stopband microstrip lines based on complementary split ring resonators", IEEE Microw. Wireless Componon. Lett., vol. 14, no. 6, pp. 280-282, Jun. 2004.   DOI
20 J. D. Baena, J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines", IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1451-1461, Apr. 2005.   DOI