• Title/Summary/Keyword: oscillations

Search Result 955, Processing Time 0.037 seconds

Simulation of Pressure Oscillation in Water Caused by the Compressibility of Entrapped Air in Dam Break Flow (댐 붕괴 유동에서 갇힌 공기의 압축성에 의한 물의 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.56-65
    • /
    • 2018
  • Pressure oscillation caused by the compressibility of entrapped air in dam break flow is analyzed using an open source code, which is a two-phase compressible code for non-isothermal immiscible fluids. Since compressible flows are computed based on a pressure-based method, the code can handle the equation of state of barotropic fluid, which is virtually incompressible. The computed time variation of pressure is compared with other experimental and computational results. The present result shows good agreements with other results until the air is entrapped. As the entrapped air bubbles pulsate, pressure oscillations are predicted and the pressure oscillations damp out quickly. Although the compressibility parameter of water has been varied for a wide range, it has no effects on the computed results, because the present equation of state for water is so close to that of incompressible fluid. Grid independency test for computed time variation of pressure shows that all results predict similar period of pressure oscillation and quick damping out of the oscillation, even though the amplitude of pressure oscillation is sensitive to the velocity field at the moment of the entrapping. It is observed that as pressure inside the entrapped air changes quickly, the pressure field in the neighboring water adjusts instantly, because the sound of speed is much higher in water. It is confirmed that the period of pressure oscillation is dominated by the added mass of neighboring water. It is found that the temperature oscillation of the entrapped air is critical to the quick damping out of the oscillations, due to the fact that the time averaged temperature inside the entrapped air is higher than that of surrounding water, which is almost constant.

An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System (CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구)

  • 김태한;심우건;한상구;정종식;김선철
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

Numerical simulations of the vertical kink oscillations of the solar coronal loop with field aligned flows

  • Pandey, V.S.;Magara, T.;Lee, D.H.;Selwa, M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.103.1-103.1
    • /
    • 2011
  • Recent observations by Hinode show weakly-attenuated coronal loop oscillations in the presence of background flow (Ofman & Wang 2008, A&A, 482, L9). We study the vertical kink oscillations in solar coronal loops, considering field aligned flows inside the loops as well as surrounding the loops environment. The two dimensional numerical model of straight slab is used to explore the excitation and attenuation of the impulsively triggered fast magnetosonic standing kink waves. A full set of time dependent ideal magnetohydrodynamics equations is solved numerically taking into account the value of flow of the order of observed flows detected by SOT/Hinode. We find that relaxing the assumption of the limited flows within the loops enhances the damping rate of the fundamental mode of the standing kink waves by 2 - 3 % as compared to flow pattern which is basically localized within the loops. We further notice that extending the flow pattern beyond the loop thickness also enhances the strength of the shock associated with slow magnetoacoustic waves, recognized as an addition feature detected in the numerical simulation. The wider out-flow pattern destroys the oscillation patterns early as compared to narrower flow pattern, in other words we can say that it affects the durability of the oscillation. However, for the typical coronal loops parameters we find that the observed durability periods of the SOT/Hinode observation can be achieved with an out-flow Gaussian patterns for which half-width is not greater than factor 2.0 of the loop-half-width. explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

Calcium Signaling in Salivary Secretion

  • Kim, Jin Man;Lee, Sang-Woo;Park, Kyungpyo
    • Journal of Korean Dental Science
    • /
    • v.10 no.2
    • /
    • pp.45-52
    • /
    • 2017
  • Calcium has versatile roles in diverse physiological functions. Among these functions, intracellular $Ca^{2+}$ plays a key role during the secretion of salivary glands. In this review, we introduce the diverse cellular components involved in the saliva secretion and related dynamic intracellular $Ca^{2+}$ signals. Calcium acts as a critical second messenger for channel activation, protein translocation, and volume regulation, which are essential events for achieving the salivary secretion. In the secretory process, $Ca^{2+}$ activates $K^+$ and $Cl^-$ channels to transport water and electrolyte constituting whole saliva. We also focus on the $Ca^{2+}$ signals from intracellular stores with discussion about detailed molecular mechanism underlying the generation of characteristic $Ca^{2+}$ patterns. In particular, inositol triphosphate signal is a main trigger for inducing $Ca^{2+}$ signals required for the salivary gland functions. The biphasic response of inositol triphosphate receptor and $Ca^{2+}$ pumps generate a self-limiting pattern of $Ca^{2+}$ efflux, resulting in $Ca^{2+}$ oscillations. The regenerative $Ca^{2+}$ oscillations have been detected in salivary gland cells, but the exact mechanism and function of the signals need to be elucidated. In future, we expect that further investigations will be performed toward better understanding of the spatiotemporal role of $Ca^{2+}$ signals in regulating salivary secretion.

DYNAMICAL CHARACTERISTICS OF SUNSPOT CHROMOSPHERES II. ANALYSIS OF CA II H, K AND ${\lambda}8498$ LINES OF A SUNSPOT (SPO 5007) FOR OSCILLATORY MOTIONS

  • Yoon, Tae-Sam;Yun, Hong-Sik;Kim, Jeong-Hoon
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.245-253
    • /
    • 1995
  • We have analyzed the time series of Ca II H,K and ${\lambda}8498$ line profiles taken for a sunspot (SPO 5007) with the Echelle spectrograph attached to Vacuum Tower Telescope at Sacramento Peak Solar Observatory. Each set of spectra was taken simultaneously for 20 minutes at a time interval of 30 seconds. A total of 40 photographic films for each line was scanned by a PDS at Korea Astronomy Observatory. The central peak intensity of Ca II H ($I_{max}$), the intensity measured at ${\Delta}{\lambda}=-0.1{\AA}$ from the line center of ${\lambda}8498(I_{{\lambda}8489})$, the radial velocity ($V_r$) and the Doppler width (${\Delta}{\lambda}_D$) estimated from Ca II H have been measured to study the dynamical behaviors of the sunspot chromosphere. Fourier analysis has been carried out for these measured quantities. Our main results are as follows: (1) We have confirmed the 3-minute oscillation being dominant throughout the umbra. The period of oscillations jumps from 180 sec in the umbra to 500 to 1000 sec in the penumbra. (2) The nonlinear character of the umbral oscillation is noted from the observed sawtooth shaped radial velocity fluctuations with amplitudes reaching up to $5{\sim}6\;km/sec$. (3) The spatial distribution of the maximum powers shows that the power of oscillations is stronger in the umbra than in the penumbra. (4) The spatial distributions of the time averaged < $I_{max}$ > and < $V_r$ > across the spot are found to be nearly axially symmetric, implying that the physical quantities derived from the line profiles of Ca II H and ${\lambda}8498$ are inherently associated with the geometry of the magnetic field distribution of the spot. (5) The central peaks of the CaII H emission core lead the upward motions of the umbral atmosphere by $90^{\circ}$, while no phase delay is found in intensities between $I_{max}$ and $I_{{\lambda}8498}$, suggesting that the umbral oscillation is of standing waves.

  • PDF

Modeling the Calculation of Lateral Accelerations in Railway Vehicles as a Tool of Alignment Design

  • Nasarre, J.;Cuadrado, M.;Requejo, P.Gonzalez;Romo, E.;Zamorano, C.
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.118-123
    • /
    • 2009
  • Railway track alignment Standards set a minimum lenght value for straight and circular alignments (art. 5.2.9.), in order to ensure passenger ride comfort in railway vehicles of which dynamic oscillations will thus have to be limited. The transitions between alignments can cause abrupt changes (usually called discontinuities or singular points of the alignment) of curvature, of rate of change of curvature or of rate of change of cant. A passenger is likely to experience effects due to the excitation of the elastic suspension of the vehicle which generates oscillations that are damped as the vehicle moves away from the singularity. The amplitude of these oscillations should be adequately attenuated by the damping of the suspension system within the interval between two successive singular points, especially to avoid resonances. Therefore minimum lengths between two successive singular points are stated in alignment standards. Nevertheless, these nonnative values can be overly conservative in some cases. As an alternative, track alignment designers could try to assess how much the excitation has been attenuated between two successive singular points and thus assess at which point a new singularity may be present without affecting ride comfort. Although such assessment can be made with commercial SW packages which simulate the dynamic behavior of a vehicle considered as a set of rigid bodies interconnected with elastic elements simulating the suspension systems (such as SIMPACK, ADAMS or VAMPIRE), a simplified and user-friendly computation method (based upon the analytical solution of differential equations governing the phenomenon) is made available in this paper to track design engineers, not always used to working with full dynamic models.

  • PDF

Shubnikov-de Haas Oscillations in an Individual Single-Crystalline Semimetal Bismuth Nanowire (단결정 반금속 비스무스 단일 나노선의 Shubnikov-de Haas 진동)

  • Kim, Jeong-Min;Ham, Jin-Hee;Shim, Woo-Young;Lee, Kyoung-Il;Jeon, Kye-Jin;Jeung, Won-Young;Lee, Woo Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.103-106
    • /
    • 2008
  • The magneto-transport properties of an individual single crystalline Bi nanowire grown by a spontaneous growth method are reported. A four-terminal device based on an individual 400-nm-diameter nanowire was successfully fabricated using a plasma etching technique that removed an oxide layer that had formed on the surface of the nanowire. Large transverse ordinary magnetoresistance (1401%) and negative longitudinal ordinary magnetoresistance (-38%) were measured at 2 K. It was observed that the period of Shubnikov-de Haas oscillations in transverse geometry was $0.074^{T-1}$, $0.16^{T-1}$ and $0.77^{T-1}$, which is in good agreement with those of bulk Bi. However, it was found that the period of SdH oscillation in longitudinal geometry is $0.24^{T-1}$, which is larger than the value of $0.16^{T-1}$ reported for bulk Bi. The deviation is attributable to the spatial confinement arising from scattering at the nanowire surface boundary.

Response of Ultrafiltration Flux to Periodic Oscillations in Transmembrane Pressure Gradient (압력구배의 주기적 변화에 따른 한외여과 Flux의 변화)

  • 서창우;이은규
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.230-234
    • /
    • 1999
  • To improve the crossflow untrafiltration flux, we applied periodic oscillations in transmembrane pressure gradient in order to promote fluid turbulence by inducing repeated compression and relaxation of the cake/gel layer. The oscillatory forms used were square-, sine-, triangle-wave, and pumping interruption. The permeate flux profiles were mathematically simulated and compared with the experimental data. The result showed the periodic pumping interruption most effectively improved the overall flux by up to about 32%. Enough pumping off-time, at least on the order of tens of seconds, was needed to allow the solutes in the layer to diffuse back to the bulk phase. It was better to start the oscillations earlier before the layer was fully established. The square-wave oscillation yielded about 11% increase, which was particularly pronounced in the later part of the filtration. Either the amplitude or the period of the oscillations resulted little influence on flux.actate ester, and lactate ester produced in esterification reaction was distilled simultaneously with hydrolysis reaction into lactic acid. When the yields of lactic acid recovered by batch reactive distillations with various alcohols were compared, the yield of lactic acid was increased as the volatility of lactate ester was increased. In this batch reactive distillation, because the mixtures condensed in partial condensor were flown to reboiler through distillation column, the recovery yield of lactic acid was affected by operation temperature of partial condensor. Hydrolysis reaction into lactic acid in distillation column rarelyoccurred because of short retention time of lactate ester and water. Lactate ester was reacted into lactic acid in reboiler.

  • PDF

OSCILLATIONS OF THE OUTER BOUNDARY OF THE OUTER RADIATION BELT DURING SAWTOOTH OSCILLATIONS (SAWTOOTH 진동 중에 발생한 바깥 방사선 벨트 외경계면 진동)

  • Kim Jae-Hun;Kim Kyung-Chan;Lee Dae-Young;Kim Hee-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.217-226
    • /
    • 2006
  • We report three sawtooth oscillation events observed at geosynchronous orbit where we find quasi-periodic (every 2-3 hours) sudden flux increases followed by slow flux decreases at the energy levels of ${\sim}50-400keV$. For these three sawtooth events, we have examined variations of the outer boundary of the outer radiation belt. In order to determine L values of the outer boundary, we have used data of relativistic electron flux observed by the SAMPEX satellite. We find that the outer boundary of the outer radiation belt oscillates periodically being consistent with sawtooth oscillation phases. Specifically, the outer boundary of the outer radiation belt expands (namely, the boundary L value increases) following the sawtooth particle flux enhancement of each tooth, and then contracts (namely, the boundary L value decreases) while the sawtooth flux decreases gradually until the next flux enhancement. On the other hand, it is repeatedly seen that the asymmetry of the magnetic field intensity between dayside and nightside decreases (increases) due to the dipolarization (the stretching) on the nightside as the sawtooth flux increases (decreases). This implies that the periodic magnetic field variations during the sawtooth oscillations are likely responsible for the expansion-contraction oscillations of the outer boundary of the outer radiation belt.