• Title/Summary/Keyword: oscillations

Search Result 955, Processing Time 0.032 seconds

STUDY ON GRAVOTHERMAL OSCILLATIONS WITH TWO-COMPONENT FOKKER-PLANCK MODELS

  • KIM SUNGSOO S.;LEE HYUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.143-144
    • /
    • 1996
  • Two-component models (normal star and degenerate star components) are the simplest realization of clusters with a mass spectrum because the high mass stars quickly evolve off leaving degenerate stars behind, while low mass stars survive for a long time as main-sequence stars. In the present study we examine the post-collapse evolution of globular clusters using two-component Fokker-Planck models that include three-body binary heating. We confirm that a simple parameter ${\epsilon}{\equiv} (E_{tot}/t_{rh})/(E_c/t_{rc})$ well describes the occurrence of gravothermal oscillations of two-component clusters. Also, we find that the degree of instability depends on the steepness of the mass function such that clusters with a steeper mass function are less exposed to instability.

  • PDF

Barionic Acoustic Oscillations with 3-point Correlation Function of Quasars

  • Choi, Doohyun;Rossi, Graziano;Slepian, Zachary;Eisenstein, Daniel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.54.2-54.2
    • /
    • 2017
  • While quasars are sparse in number density, they reside at relatively high-redshift as compared to e.g. luminous red galaxies. Hence, they are likely to be less non-linearly evolved than the galaxy population, and thus have a distribution that more closely mirrors the primordial density field. Therefore, they offer an intriguing opportunity to search for Baryonic Acoustic Oscillations (BAO). To this end, the 3-point correlation function (3PCF) is an excellent statistical tool to detect BAO. In this work, we will make the first-ever measurement of the large-scale quasar 3PCF from the SDSS-IV DR14 quasar sample (spanning the largest volume to-date). This work will use the order N2-time 3PCF algorithmof Slepian & Eisenstein (2015), with N the number of objects.

  • PDF

EXTENSION OF MULTI-DIMENSIONAL LIMITING PROCESS ONTO THREE-DIMENSIONAL UNSTRUCTURED GRIDS (다차원 공간 제한 기법의 3차원 비정렬 격자계로 확장)

  • Park, J.S.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.404-411
    • /
    • 2010
  • The present paper deals with the continuous work of extending multi-dimensional limiting process (MLP), which has been quite successfully proposed on two- and three-dimensional structured grids, onto the unstructured grids. The basic idea of the present limiting strategy is to control the distribution of both cell-centered and cell-vertex physical properties to mimic a multi-dimensional nature of flow physics, which can be formulated as so called the MLP condition. The MLP condition can guarantee a high-order spatial accuracy without yielding spurious oscillations. Recently, MLP slope limiter was proposed based on the MUSCL-type reconstruction in two-dimensional case and it can be readily extended to three-dimensional case. Through various numerical analyses and extensive computations, it is observed that the proposed limiters are quite effective in controlling numerical oscillations and very accurate in capturing both discontinuous and continuous multi-dimensional flow features on 3-D tetrahedral grids.

  • PDF

Combustion Control and Symptom Detection on Self-excited Combustion Oscillation (자려 연소진동에 관한 연소제어와 징후의 검출)

  • Yang Young-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1111-1122
    • /
    • 2004
  • An idea to suppress the self-excited combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined and the unsteady combustion was driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by this method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillation. Symptoms of self-excited combustion oscillation were also studied in order to predict the onset of combustion oscillation before it proceeded to a catastrophic failure For the purpose, the unique measures to observe the onset of self-excited combustion oscillations based on the careful statistics of fluctuating properties in flames, such as pressure or emission of OH radicals, have been proposed.

Visualization of Disruptive Bubble Behavior in Ultrasonic Fields (초음파장내 파괴적인 기포의 운동 가시화)

  • Kim, Tae-Hong;Park, Keun-Hwan;Kim, Ho-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.17-19
    • /
    • 2011
  • The bubble oscillations play an important role in ultrasonic cleaning processes. In the ultrasonic cleaning of semiconductor wafers, the cleaning process often damages micro/nano scale patterns while removing contaminant particles. However, the understanding of how patterns in semiconductor wafers are damaged during ultrasonic cleaning is far from complete yet. Here, we report the observations of the motion of bubbles that induce solid wall damage under 26 kHz continuous ultrasonic waves. We classified the motions into the four types, i.e. volume motion, shape motion, splitting or jetting motion and chaotic motion. Our experimental results show that bubble oscillations get unstable and nonlinear as the ultrasonic amplitude increases, which may exert a large stress on a solid surface raising the possibility of damaging microstructures.

Electrochemical Impulse Oscillations at the Platinum Group Electrode Interfaces (백금족 전력 계면에서 전기화학적 Impulse 발진)

  • 전장호;손광철;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.143-151
    • /
    • 1995
  • The electrochemical impulse oscillations of the cathodic currents at the platinum group (Pt, Pd) electrode/(0.05M KHC$_{8}H_{4}O_{4}$) buffer solution interfaces have been studied using voltammetric, chronoamperometric, and electrochemical impedance methods. The periodic impulses of the cathodic currents are the activation controlled currents due to the hydrogen evolution reaction, and depend on the fractional surface coverage of the adsorbed hydrogen intermediate and potential. The oscillatory mechanism of the cathodic current impulses is connected with the unstable steady state of negative differential resistance. The widths and periods of the cathodic current impulses are 4ms or 5ms and 152.5ms or 305ms, respectively. The H$^{+}$ discharge reaction step is 38 or 61 times faster thatn the recombination reaction steps and the H$^{+}$ mass transport processes. The atom-atom recombination reaction step is twice faster thatn the atom-ion recombination reaction step. The two kinds of active sites corresponding to the atom-atom and atom-ion recombination reaction steps exist on the platinum group electrode surfaces.

  • PDF

Experimental study for the spacer damper clamp displacement due to subspan oscillations (가공선로 서브스판진동이 스페이서댐퍼 클램프 변위에 미치는 영향 실험적 고찰)

  • Lee, H.K.;Han, H.J.;Bang, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2094-2095
    • /
    • 2008
  • In order to protect conductors from oscillations or vibrations due to winds, spacer dampers or spacers are installed on bundled conductors in overhead transmission lines. Generally the spacer damper clamp can move slightly according to oscillation directions, namely conductor direction, vertical & horizontal direction This is for reducing fatigue phenomena of the clamps. Sometimes movement of the clamp to conductor direction raises a doubt for its necessity. Then this paper carried out oscillation tests to know clamp displacement due to the subspan oscillation.

  • PDF

A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor

  • Senjyu, Tomonobu;Shirasawa, Tomiyuki;Uezato, Katsumi
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.155-161
    • /
    • 2002
  • This paper presents a maximum power point tracking algorithm for Photovoltaic array using only instantaneous output current information. The conventional Hill climbing method of peak power tracking has a disadvantage of oscillations about the maximum power point. To overcome this problem, we have developed an algorithm that will estimate the duty ratio corresponding to maximum power operation of solar cell. The estimation of the optimal duty ratio involves, finding the duty ratio at which integral value of output current is maximum. For the estimation, we have used the well know Lagrange's interpolation method. This method can track maximum power point quickly even for changing solar isolation and avoids oscillations after reaching the maximum power point.

Finite Element Analysis of Electromagnetic Field Equation with Speed E.M.E (속도기전력을 갖는 전자력 방정식의 유한요소 해석)

  • Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.252-258
    • /
    • 1987
  • Time periodic finite element solutions for sinusoidally excited electromagnetic field problems in moving media are presented. Solutions by the Galerkin method contain spurious oscillations when grid Peclet number is more than one. To suppress these oscillations an upwind finite element method using two different time periodic test functions is introduced. One is multiplied to second and first-order space derivative terma and the other to the time derivative term. Test functions are obtained from trial functions by adding or subtracting quadratic bias functions with appropriate scaling factors. Phase differences are considered between trial functions and bias functions. For simple interpretations of the phase differences, complex scaling factors are used. The proposed method is developed to give nodally exact solutions for uniform grid spacing in one dimensional problems. Based on the one dimensional results, a two dimensional upwinding scheme is also derived.

  • PDF