• Title/Summary/Keyword: oscillation behavior

Search Result 185, Processing Time 0.024 seconds

OSCILLATION OF NONLINEAR SECOND ORDER NEUTRAL DELAY DYNAMIC EQUATIONS ON TIME SCALES

  • Agwo, Hassan A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.299-312
    • /
    • 2008
  • In this paper, we establish some oscillation criteria for nonautonomous second order neutral delay dynamic equations $(x(t){\pm}r(t)x({\tau}(t)))^{{\Delta}{\Delta}}+H(t,\;x(h_1(t)),\;x^{\Delta}(h_2(t)))=0$ on a time scale ${\mathbb{T}}$. Oscillatory behavior of such equations is not studied before. This is a first paper concerning these equations. The results are not only can be applied on neutral differential equations when ${\mathbb{T}}={\mathbb{R}}$, neutral delay difference equations when ${\mathbb{T}}={\mathbb{N}}$ and for neutral delay q-difference equations when ${\mathbb{T}}=q^{\mathbb{N}}$ for q>1, but also improved most previous results. Finally, we give some examples to illustrate our main results. These examples arc [lot discussed before and there is no previous theorems determine the oscillatory behavior of such equations.

Properties for the Behavior of Charged Carrier within the Intergranular Layer of ZnO Varistor Fabricated 3-Composition Seed Grain Method (3-성분 종입자 법으로 제조한 ZnO 바리스터의 입계모델에서 캐리어의 거동 특성)

  • Jang, Kyung-Uk;Lee, Joon-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1159-1161
    • /
    • 1993
  • This paper may be presented the carrier oscillation properties for the varistor fabricated by a new method of three-composition seed grain, in order to analyze the behavior of carriers at the its equivalent circuit model. The oscillation phenomena of carriers appeared from current-voltage characteristics under knee voltage is shown by the transient flow of non trapped carriers group in the trap level of intergranular layer, surface state and/or depletion layer. However, Current oscillation phenomena is hardly shown in the high electric field. The injected carriers from both electrodes are directly flowed from the conduction band of forward biased grain through the intergranular layer into the reverse biased grain, because the trap level in the electric field above the knee voltage is mostly filled.

  • PDF

Edge Flame Instability of CH4-Air Diffusion Flame Diluted with CO2 (이산화탄소로 희석된 메탄-공기 확산화염의 에지화염 불안정성)

  • Hwang, Dong-Jin;Kim, Jeong-Soo;Keel, Sang-In;Kim, Tae-Kwon;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.905-912
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss in addition to radiative loss could be remarkable at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this sheets flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations are categorized into three: a growing-, a harmonic- and a decaying-oscillation mode. Onset conditions of the edge flame oscillation and the relevant modes are examined with global strain rate and $CO_2$ mole fraction in fuel stream. A flame stability map based on the flame oscillation modes is also provided at low strain rate flames.

Condensation oscillation characteristic of steam with non-condensable gas through multi-hole sparger at low mass flux

  • Dandi Zhang;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.780-791
    • /
    • 2023
  • To study oscillation characteristic of steam and non-condensable gas direct contact condensation through multi-hole sparger at low mass flux, a series of experiments of pure steam and mixture gas condensation have been carried out under the conditions of steam mass flux of 20-120kg/m2s, water temperature of 20-95 ℃ and mass fraction of non-condensable gas of 0-5%. The regime map of pure steam condensation through multi-hole sparger is divided into steam chugging, separated bubble, aggregated bubble and escaping aggregated bubble. The bubbles behavior of synchronization in the same hole columns and desynchronized excitation between different hole columns can be found. The coalescence effect of mixture bubbles increases with water temperature and non-condensable gas content increasing. Pressure oscillation intensity of pure steam condensation first increases and then decreases with water temperature increasing, and increases with steam mass flux increasing. Pressure oscillation intensity of mixture gas condensation decreases with water temperature and non-condensable gas content increasing, which is significantly weaker than that of pure steam condensation. The oscillation dominant frequency decreases with the rise of water temperature and non-condensable gas content. The correlations for oscillation intensity and dominant frequency respectively are developed in pure steam and mixture gas condensation at low mass flux.

Construction of an Oscillator Gene Circuit by Negative and Positive Feedbacks

  • Shen, Shihui;Ma, Yushu;Ren, Yuhong;Wei, Dongzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.139-144
    • /
    • 2016
  • Synthetic oscillators are gene circuits in which the protein expression will change over time. The delay of transcription, translation, and protein folding is used to form this kind of behavior. Here, we tried to design a synthetic oscillator by a negative feedback combined with a positive feedback. With the mutant promoter PLacC repressed by LacIq and PLux activated by AHL-bound LuxR, two gene circuits, Os-LAA and Os-ASV, were constructed and introduced into LacI-deleted E. coli DH5α cells. When glucose was used as the carbon source, a low level of fluorescence was detected in the culture, and the bacteria with Os-ASV showed no oscillation, whereas a small portion of those carrying Os-LAA demonstrated oscillation behavior with a period of about 68.3 ± 20 min. When glycerol was used as the carbon source, bacteria with Os-ASV demonstrated high fluorescence value and oscillation behavior with the period of about 121 ± 21 min.

Biological Clock and Ultradian Metabolic Oscillation in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 생물시계와 초단기 대사진동)

  • Kwon, Chong Suk;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.985-991
    • /
    • 2018
  • Biological clocks are the basis of temporal control of metabolism and behavior. These clocks are characterized by autonomous free-running oscillation and temperature compensation and are found in animals, plants, and microorganisms. To date, various biological clocks have been reported. These include clocks governing hibernation, sleep/wake, heartbeat, and courtship song. These clocks can be differentiated by the period of rhythms, for example, infradian rhythms (> 24-hr period), circadian rhythms (24-hr period), and ultradian rhythms (< 24-hr period). In yeast (Saccharomyces cerevisiae), at least five different autonomous oscillations have been reported; (1) glycolytic oscillations (T = 1~30 min), (2) cell cycle-dependent oscillations (T = 2~16 hr), (3) ultradian metabolic oscillations (T = 15~50 min), (4) yeast colony oscillations (T = a few hours), and (5) circadian oscillations (T = 24 hr). In this review, we discuss studies on oscillators, pacemakers, and synchronizers, in addition to the application of biological clocks, to demonstrate the nature of autonomous oscillations, especially ultradian metabolic oscillations of S. cerevisiae.

Effects of Heat Losses on Edge-flame Instabilities in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 에지화염 불안정성에 관한 열손실 효과)

  • Park June-Sung;Hwang Dong-Jin;Kim Jeong-Soo;Keel Sang-In;Kim Tae-Kwon;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.996-1002
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified

A Study on Effects of Flame Curvature in Oscillatory Laminar Lifted-flames (진동하는 층류부상화염에서 화염곡률 효과에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Experiment is conducted to grasp effects of flame curvature on flame behavior in laminar lifted-jet flames. Nozzle diameters of 0.1 and 1.0mm are used to vary flame curvature of edge flame. There exist three types of edge flame oscillation. These edge flame oscillations may be caused by radial heat loss at all flame conditions, by fuel Lewis numbers near or larger than unity with the help of appreciable radial conduction heat loss, and by buoyancy effects. These are confirmed by the analysis of oscillation frequencies. It is however seen that the change of lift-off height through edge-flame oscillation is mainly due to radial heat loss irrespective of Lewis number and buoyancy.

  • PDF

Study on Unsteady Wake Behavior Behind Oscillating Flat Plates (진동하는 평판에서 발생하는 비정상 후류형상연구)

  • Ahn, June-Sung;Han, Cheol-Heui;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.950-955
    • /
    • 2003
  • The fluid propulsion mechanism of two oscillating flat plates is studied numerically using a discrete vortex method. Presently, the flat plates are assumed to be rigid. To analyze the closely coupled aerodynamic interference between the flat plates, a core addition scheme and a vortex core model are combined together. A calculated wake pattern for a flat plate in heaving oscillation motion is compared with the flow visualization. The effect of wake shapes on the aerodynamic characteristics of the flat plate in pitching oscillation is investigated. The velocity profiles behind the flat plates in pitching oscillations are plotted to investigate the possible thrust generation mechanism.

  • PDF