• Title/Summary/Keyword: oryzae

Search Result 1,003, Processing Time 0.022 seconds

Specific Detection of Xanthomonas oryzae pv. oryzicola in Infected Rice Plant by Use of PCR Assay Targeting a Membrane Fusion Protein Gene

  • Kang, Man-Jung;Shim, Jae-Kyung;Cho, Min-Seok;Seol, Young-Joo;Hahn, Jang-Ho;Hwang, Duk-Ju;Park, Dong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1492-1495
    • /
    • 2008
  • Successful control of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak, requires a specific and reliable diagnostic tool. A pathovar-specific PCR assay was developed for the rapid and accurate detection ofthe plant pathogenic bacterium Xanthomonas oryzae pv. oryzicola in diseased plant. Based on differences in a membrane fusion protein gene of Xanthomonas oryzae pv. oryzicola and other microorganisms, which was generated from NCBI (http://www.ncbi.nlm.nih.gov/) and CMR (http://cmr.tigr.org/) BLAST searches, one pair of pathovar-specific primers, XOCMF/XOCMR, was synthesized. Primers XOCMF and XOCMR from a membrane fusion protein gene were used to amplity a 488-bp DNA fragment. The PCR product was only produced from 4 isolates of Xanthomonas oryzae pv. oryzicola among 37 isolates of other pathovars and species of Xanthomonas, Pectobacterium, Pseudomonas, Burkholderia, Escherichia coli, and Fusarium oxysporum f.sp. dianthi. The results suggested that the assay detected the pathogen more rapidly and accurately than standard isolation methods.

PCR-Based Assay for Rapid and Specific Detection of the New Xanthomonas oryzae pv. oryzae K3a Race Using an AFLP-Derived Marker

  • Song, Eun-Sung;Kim, Song-Yi;Noh, Tae-Hwan;Cho, Heejung;Chae, Soo-Cheon;Lee, Byoung-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.732-739
    • /
    • 2014
  • We describe the development of a polymerase chain reaction method for the rapid, precise, and specific detection of the Xanthomonas oryzae pv. oryzae (Xoo) K3a race, the bacterial blight pathogen of rice. The specific primer set was designed to amplify a genomic locus derived from an amplified fragment length polymorphism specific for the K3a race. The 1,024 bp amplicon was generated from the DNA of 13 isolates of Xoo K3a races out of 119 isolates of other races, pathovars, and Xanthomonas species. The assay does not require isolated bacterial cells or DNA extraction. Moreover, the pathogen was quickly detected in rice leaf 2 days after inoculation with bacteria and at a distance of 8 cm from the rice leaf 5 days later. The results suggest that this PCR-based assay will be a useful and powerful tool for the detection and identification of the Xoo K3a race in rice plants as well as for early diagnosis of infection in paddy fields.

Deciphering the Role of Tyrosine Sulfation in Xanthomonas oryzae pv. oryzae Using Shotgun Proteomic Analysis

  • Park, Hye-Jee;Park, Chang-Jin;Bae, Nahee;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.266-272
    • /
    • 2016
  • A bacterial tyrosine sulfotransferase, RaxST, is required for activation of rice XA21-mediated immunity, and it catalyzes sulfation of tyrosine residues of Omp1X and RaxX in Xanthomonas oryzae pv. oryzae, a causal agent of bacterial blight in rice. Although RaxST is biochemically well-characterized, biological functions of tyrosine sulfation have not been fully elucidated. We compared protein expression patterns between the wildtype and a raxST knockout mutant using shotgun proteomic analysis. Forty nine proteins displayed a more than 1.5-fold difference in their expression between the wildtype and the mutant strains. Clusters of orthologous groups analysis revealed that proteins involved in cell motility were most abundant, and phenotypic observation also showed that the twitching motility of the mutant was dramatically changed. These results indicate that tyrosine sulfation by RaxST is essential for Xoo movement, and they provide new insights into the biological roles of RaxST in cellular processes.

DNA Microarray and Gene Ontology Enrichment Analysis Reveals That a Mutation in opsX Affects Virulence and Chemotaxis in Xanthomonas oryzae pv. oryzae

  • Kim, Hong-Il;Park, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.190-200
    • /
    • 2016
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice (Oryza sativa L.). In this study, we investigated the effect of a mutation in opsX (XOO1056), which encodes a saccharide biosynthesis regulatory protein, on the virulence and bacterial chemotaxis of Xoo. We performed DNA micro-array analysis, which showed that 63 of 2,678 genes, including genes related to bacterial motility (flagellar and chemotaxis proteins) were significantly downregulated ($<\;-2\;log_2$ fold changes) by the mutation in opsX. Indeed, motility assays showed that the mutant strain was nonmotile on semisolid agar swarm plates. In addition, a mutant strain (opsX::Tn5) showed decreased virulence against the susceptible rice cultivar, IR24. Quantitative real-time RT-PCR reaction was performed to confirm the expression levels of these genes, including those related to flagella and chemotaxis, in the opsX mutant. Our findings revealed that mutation of opsX affects both virulence and bacterial motility. These results will help to improve our understanding of Xoo and provide insight into Xoo-rice interactions.

Gene Analysis of Resistance to Bacterial Blight, Xanthomonas oryzae pv, oryzae in Korean Six Rice Cultivars (우리나라 6개 벼 품종의 흰잎마름병 저항성 유전자 분석)

  • Ryuk, Jin-Ah;Choi, Chun-Hwan;Kang, Hee-Kyoung;Choi, Jae-Eul
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • The gene analysis of resistance in rice cultivars, Daeanbyeo, Hwasunchalbyeo, Daejinbyeo, Naepungbyeo, Hwajinbyeo and Surabyeo to strains of Xanthomonas oryzae pv. oryzae was studied. F$_1$ plants and F$_2$ populations from the crosses between six cultivars and near isogenic lines carrying the single bacterial blight(BB) resistance gene were analyzed using Korean and Japanese BB races. Daeanbyeo, Hwasunchalbyeo, Daejinbyeo, Naepungbyeo, Hwajinbyeo and Surabyeo are alleic with IRBB101 but are non-alleic with IRBB104 and IRBB105. The allelic tests indicated that Daeanbyeo, Hwasunchalbyeo, Daejinbyeo, Naepungbyeo, Hwajinbyeo and Surabyeo have the Xal gene for resistance.

Current Progress in the Analysis of Transcriptional Regulation in the Industrially Valuable Microorganism Aspergillus oryzae

  • Nakajima, Keiichi;Sano, Motoaki;Machida, Masayuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.253-262
    • /
    • 2000
  • Aspergillus is considered to be an attractive host for heterologous protein production because of its safety and ability to secrete large amounts of proteins. In order to obtain high productivity, thus far promoters of amylases have been most widely used in A. oryzae. Recent progress in cloning and expression analysis, including EST sequencing, revealed that glycolytic genes represent some of those most strongly expressed in A. oryzae. Therefore, promoters of glycolytic genes could be important alternatives to promoters of amylases because lower amounts of proteases are produced in the presence of glucose. Several A. oryzae transcription factors responsible for the induction and/or maximum expression of many industrially important genes encoding amylases and proteases have been cloned and characterized. In addition to the transcriptional regulatory factors, the gene encoding the largest subunit of RNa polymerase II, constituting the basic transcription machinery, has also been cloned from A. oryzae. This recently acquired understanding of the details of transcriptional regulatory mechanisms and factors will facilitate engineering flexible controls for the expression of proteins important for the fermentation industries.

  • PDF

Differentiation of Major Rice-Seedborne Bacteria by PCR-Amplified Polymorphism of Spacer Region Between 16S and 23S Ribosomal DNA (PCR로 증폭된 16S와 23S rDNA 사이 Spacer 부위의 다형성에 의한 주요 벼종자전염성 세균의 구별)

  • 김형무;송완엽
    • Korean Journal Plant Pathology
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 1996
  • 한 쌍의 R16-1과 R23-2R primer를 이용한 PCR에 의해 증폭된 16S와 23S rDNA 사이의 rDNA spacer 부위의 다형성들이 Pseudomonas avenae, P. glumae, P. fuscovaginae, P. syringae pv. syrngae, Xanthomonas oryzae pv. oryzae, X. oryzae, Xanthomonas herbicola 등 벼 종자전염성 51개 균주의 구분을 위하여 적용되었다. 증폭산물은 820∼950bp의 크기였으며, 각각의 종에 특이적이었고 구분이 가능하였다. Pseudomonas species의 증폭산물은 P. avenae는 950bp, P. glumae는 850bp, P. fuscovaginae는 770pb 및 P. syringae pv. syringae는 1,240, 1,100 및 820bp로 특이적이었다. P. avenae와 P. glumae의 국내균주들은 다형성에 있어 종내 변이는 없었다. X. oryzae pv. oryzae의 860bp와 X. oryzae pv. oryzicola의 890, 440 및 370bp의 이차산물에서 Xanthomonas species의 종내에서 균주에 관련없이 단일화된 다형성을 보였다. CXO 211을 제외한 모든 국내 균주는 a형에 속한 반면 하나의 국내 균주를 포함하여 4개 균주는 b형이었다. E. herbicola의 spacer 부위 증폭은 여러 개의 band를 보였으며, 증폭상은 각각 동일하였고, strain간의 종내 변이는 없었다. 본 실험 결과에 의하여 16S와 23S rDNAdp R16-1과 R23-2R primer를 이용하여 PCR 증폭된 spacer 다형성의 구별은 종자전염성 세균의 신속한 구별에 이용될 수 있을것이다.

  • PDF

Manufacture of Koji Using fungi Isolation from Nuruk and Identification of Koji Molds (전통누룩 진균류를 이용한 입국의 제조 및 입국곰팡이의 동정)

  • Kim, Jae-Ho;Kwon, Young-Hee;Lee, Ae-Ran;Kim, Hye-Ryun;Ahn, Byung-Hak
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.187-190
    • /
    • 2012
  • Various koji were prepared by fungi isolated from traditional nuruk and their quality characteristics were investigated. Acidity and saccharification power of their koji were ranged in 5.0~6.8 and 128sp~241sp. Nine fungi which were showed good quality and sensory evaluation were identified by analysis of their nucleotide sequences with PCR-amplified 18S rDNA internal transcribed spacer-1(ITS-1) and ITS-4 genes. Among them, six strains were identified as Aspergillus oryzae and the other strains were identified as Mycocladus corymbiferus, Rhizo-pus oryzae, Lichtheimia corymbifera.

Detoxification Mechanism and Isoenzyme Pattern Changes against Cadmium in Rhizopus oryzae (Rhizopus oryzae의 카드뮴 해독기작과 이에 관련된 동위효소의 변화 양상)

  • Lee, Ki-Sung;Kim, Young-Ho;Park, Young-Sik;Park, Yong-Keun
    • The Korean Journal of Mycology
    • /
    • v.23 no.1 s.72
    • /
    • pp.86-91
    • /
    • 1995
  • Isoenzymatic analysis related with cadmium adaptation and detoxifying mechanism were carried out upon Rhizopus oryzae. When cadmium was added into R. oryzae culture, activities of malate dehydrogenase (MDH) and glucose phosphate isomerase (GPI) related with carbohydrate metabolizing pathways were stimulated. Novel isoenzyme CAT-2 related with removing intracellular toxic peroxides, was induced lately and derepressed very highly. On the other hand, lactate-catabolizing enzymes such as lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) were repressed. These results strongly suggest that, under cadmium stress, much of derepression of enzymes relating with central metabolism such as TCA cycle that produces high yield of energy and relating with removal of toxic peroxides should be necessary.

  • PDF

Characterization of Nonaflatoxigenic Aspergillus flavus/oryzae Strains Isolated from Korean Traditional Soybean Meju

  • Sang-Cheol Jun;Yu-Kyung Kim;Kap-Hoon Han
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.408-419
    • /
    • 2022
  • Filamentous fungi that could be classified into Aspergillus flavus/oryzae were isolated from traditionally fermented meju commercially available in Korea. The samples were analyzed for aflatoxin B1 and ochratoxin A contamination by HPLC; however, no toxin was detected. In addition, fungal and bacterial metagenomic sequencing were performed to analyze the microbial distribution in the samples. The results revealed that the distribution and abundance of fungi and bacteria differed considerably depending on the production regions and fermentation conditions of the meju samples. Through morphological analysis, ITS region sequencing, and assessment of the aflatoxin-producing ability, a total of 32 A. flavus/oryzae strains were identified. PCR analysis of six regions with a high mutation frequency in the aflatoxin gene cluster (AGC) revealed a total of six types of AGC breaking point patterns. The A. flavus/oryzae strains did not exhibit the high amylase activity detected in the commercial yellow koji strain (starter mold). However, their peptidase and lipase activities were generally higher than that of the koji isolates. We verified the safety of the traditionally fermented meju samples by analyzing the AGC breaking point pattern and the enzyme activities of A. flavus/oryzae strains isolated from the samples. The isolated strains could possibly be used as starter molds for soybean fermentation.