DOI QR코드

DOI QR Code

Deciphering the Role of Tyrosine Sulfation in Xanthomonas oryzae pv. oryzae Using Shotgun Proteomic Analysis

  • Park, Hye-Jee (Department of Integrative Plant Science, Chung-Ang University) ;
  • Park, Chang-Jin (Department of Plant Biotechnology and Plant Engineering Research Institute, Sejong University) ;
  • Bae, Nahee (Department of Integrative Plant Science, Chung-Ang University) ;
  • Han, Sang-Wook (Department of Integrative Plant Science, Chung-Ang University)
  • Received : 2015.12.23
  • Accepted : 2016.02.23
  • Published : 2016.06.01

Abstract

A bacterial tyrosine sulfotransferase, RaxST, is required for activation of rice XA21-mediated immunity, and it catalyzes sulfation of tyrosine residues of Omp1X and RaxX in Xanthomonas oryzae pv. oryzae, a causal agent of bacterial blight in rice. Although RaxST is biochemically well-characterized, biological functions of tyrosine sulfation have not been fully elucidated. We compared protein expression patterns between the wildtype and a raxST knockout mutant using shotgun proteomic analysis. Forty nine proteins displayed a more than 1.5-fold difference in their expression between the wildtype and the mutant strains. Clusters of orthologous groups analysis revealed that proteins involved in cell motility were most abundant, and phenotypic observation also showed that the twitching motility of the mutant was dramatically changed. These results indicate that tyrosine sulfation by RaxST is essential for Xoo movement, and they provide new insights into the biological roles of RaxST in cellular processes.

Keywords

References

  1. Choi, H., Fermin, D. and Nesvizhskii, A. I. 2008. Significance analysis of spectral count data in label-free shotgun proteomics. Mol. Cell. Proteomics 7:2373-2385. https://doi.org/10.1074/mcp.M800203-MCP200
  2. da Silva, F. G., Shen, Y., Dardick, C., Burdman, S., Yadav, R. C., de Leon, A. L. and Ronald, P. C. 2004. Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol. Plant-Microbe Interact. 17:593-601. https://doi.org/10.1094/MPMI.2004.17.6.593
  3. Farzan, M., Mirzabekov, T., Kolchinsky, P., Wyatt, R., Cayabyab, M., Gerard, N. P., Gerard, C., Sodroski, J. and Choe, H. 1999. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96:667-676. https://doi.org/10.1016/S0092-8674(00)80577-2
  4. Gnanamanickam, S. S., Priyadarisini, V. B., Narayanan, N. N., Vasudevan, P. and Kavitha, S. 1999. An overview of bacterial blight disease of rice and strategies for its management. Curr. Sci. India 77:1435-1444.
  5. Han, S. W., Lee, S. W., Bahar, O., Schwessinger, B., Robinson, M. R., Shaw, J. B., Madsen, J. A., Brodbelt, J. S. and Ronald, P. C. 2012. Tyrosine sulfation in a Gram-negative bacterium. Nat. Commun. 3:1153. https://doi.org/10.1038/ncomms2157
  6. Han, S. W., Park, C. J., Lee, S. W. and Ronald, P. C. 2008. An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta. BMC Microbiol. 8:164. https://doi.org/10.1186/1471-2180-8-164
  7. Hopkins, C. M., White, F. F., Choi, S. H., Guo, A. and Leach, J. E. 1992. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 5:451-459. https://doi.org/10.1094/MPMI-5-451
  8. Kearns, D. B., Robinson, J. and Shimkets, L. J. 2001. Pseudomonas aeruginosa exhibits directed twitching motility up phosphatidylethanolamine gradients. J. Bacteriol. 183:763-767. https://doi.org/10.1128/JB.183.2.763-767.2001
  9. Kehoe, J. W. and Bertozzi, C. R. 2000. Tyrosine sulfation: a modulator of extracellular protein-protein interactions. Chem. Biol. 7:R57-R61. https://doi.org/10.1016/S1074-5521(00)00093-4
  10. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-176. https://doi.org/10.1016/0378-1119(95)00584-1
  11. Matsubayashi, Y., Ogawa, M., Morita, A. and Sakagami, Y. 2002. An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470-1472. https://doi.org/10.1126/science.1069607
  12. Mew, T. W. 1987. Current status and future prospects of research on bacterial blight of rice. Annu. Rev. Phytopathol. 25:359-382. https://doi.org/10.1146/annurev.py.25.090187.002043
  13. Miller, R. M., Tomaras, A. P., Barker, A. P., Voelker, D. R., Chan, E. D., Vasil, A. I. and Vasil, M. L. 2008. Pseudomonas aeruginosa twitching motility-mediated chemotaxis towards phospholipids and fatty acids: specificity and metabolic requirements. J. Bacteriol. 190:4038-4049. https://doi.org/10.1128/JB.00129-08
  14. Mitrophanov, A. Y. and Groisman, E. A. 2008. Signal integration in bacterial two-component regulatory systems. Genes Dev. 22:2601-2611. https://doi.org/10.1101/gad.1700308
  15. Monigatti, F., Hekking, B. and Steen, H. 2006. Protein sulfation analysis: a primer. Biochim. Biophys. Acta. 1764:1904-1913. https://doi.org/10.1016/j.bbapap.2006.07.002
  16. Park, H. J., Jung, H. W. and Han, S. W. 2014a. Functional and proteomic analyses reveal that wxcB is involved in virulence, motility, detergent tolerance, and biofilm formation in Xanthomonas campestris pv. vesicatoria. Biochem. Biophys. Res. Commun. 452:389-394. https://doi.org/10.1016/j.bbrc.2014.08.076
  17. Park, H. J., Lee, S. W. and Han, S. W. 2014b. Proteomic and functional analyses of a novel porin-like protein in Xanthomonas oryzae pv. oryzae. J. Microbiol. 52:1030-1035. https://doi.org/10.1007/s12275-014-4442-0
  18. Pruitt, R. N., Schwessinger, B., Joe, A., Thomas, N., Liu, F., Albert, M., Robinson, M. R., Chan, L. J., Luu, D. D., Chen, H., Bahar, O., Daudi, A., De Vleesschauwer, D., Caddell, D., Zhang, W., Zhao, X., Li, X., Heazlewood, J. L., Ruan, D., Majumder, D., Chern, M., Kalbacher, H., Midha, S., Patil, P. B., Sonti, R. V., Petzold, C. J., Liu, C. C., Brodbelt, J. S., Felix, G. and Ronald, P. C. 2015. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gramnegative bacterium. Sci. Adv. 1:e1500245. https://doi.org/10.1126/sciadv.1500245
  19. Salzberg, S. L., Sommer, D. D., Schatz, M. C., Phillippy, A. M., Rabinowicz, P. D., Tsuge, S., Furutani, A., Ochiai, H., Delcher, A. L., Kelley, D., Madupu, R., Puiu, D., Radune, D., Shumway, M., Trapnell, C., Aparna, G., Jha, G., Pandey, A., Patil, P. B., Ishihara, H., Meyer, D. F., Szurek, B., Verdier, V., Koebnik, R., Dow, J. M., Ryan, R. P., Hirata, H., Tsuyumu, S., Won Lee, S., Seo, Y. S., Sriariyanum, M., Ronald, P. C., Sonti, R. V., Van Sluys, M. A., Leach, J. E., White, F. F. and Bogdanove, A. J. 2008. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9:204. https://doi.org/10.1186/1471-2164-9-204
  20. Stone, M. J., Chuang, S., Hou, X., Shoham, M. and Zhu, J. Z. 2009. Tyrosine sulfation: an increasingly recognised posttranslational modification of secreted proteins. N. Biotechnol. 25:299-317. https://doi.org/10.1016/j.nbt.2009.03.011
  21. Tatusov, R. L., Galperin, M. Y., Natale, D. A. and Koonin, E. V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28:33-36. https://doi.org/10.1093/nar/28.1.33
  22. Whitchurch, C. B., Leech, A. J., Young, M. D., Kennedy, D., Sargent, J. L., Bertrand, J. J., Semmler, A. B., Mellick, A. S., Martin, P. R., Alm, R. A., Hobbs, M., Beatson, S. A., Huang, B., Nguyen, L., Commolli, J. C., Engel, J. N., Darzins, A. and Mattick, J. S. 2004. Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol. Microbiol. 52:873-893. https://doi.org/10.1111/j.1365-2958.2004.04026.x

Cited by

  1. Elucidating Functions of FleQ in Xanthomonas oryzae pv. oryzae by Comparative Proteomic and Phenotypic Analyses vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103038