• 제목/요약/키워드: orthotropic shell

검색결과 77건 처리시간 0.023초

보강된 사다리꼴 주름판의 과도 응답 해석 (Transient Response Analysis of Trapezoidal Corrugated Plates with Stiffeners)

  • 박경조;김영완
    • 한국소음진동공학회논문집
    • /
    • 제24권10호
    • /
    • pp.788-794
    • /
    • 2014
  • In this paper, the transient response analysis of the trapezoidal corrugated plate subjected to the pulse load is investigated by the theoretical method. Three types of pulse loads are considered: stepped, isosceles triangular and right triangular pulse loads. The corrugated plates can be represented as an orthotropic plate. Both the effective extensional and flexural stiffness of this equivalent orthotropic plate are considered in the analysis. The plate is stiffened by concentric stiffeners perpendicular to the corrugation direction. The stiffening effect is represented by the discrete stiffener theory. This theoretical results are validated by those obtained from 3D finite element analysis based on shell elements. Some numerical results are presented to check the effect of the geometric properties.

Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior

  • Darilmaz, Kutlu
    • Steel and Composite Structures
    • /
    • 제12권4호
    • /
    • pp.275-289
    • /
    • 2012
  • In this paper the influence of stiffener location, rise/span ratio and fibre orientation on vibration behavior of corner supported hypar shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Benchmark problems are solved to validate the approach and free vibration response of stiffened orthotropic hypar shells is studied both with respect to fundamental frequency and mode shapes by varying the location of stiffeners, rise/span ratio and fiber orientation.

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

내부에 사각판이 결합된 복합재료 원통쉘의 자유진동 (Free Vibration of Composite Cylindrical Shells with a Longitudinal, Interior Rectangular Plate)

  • 이영신;최명환
    • Composites Research
    • /
    • 제12권5호
    • /
    • pp.65-79
    • /
    • 1999
  • 본 논문은 단순지지된 복합재료 사각판과 원통쉘이 결합된 구조물의 자유진동해석을 위한 해석적 방법에 대하여 기술하였다. 결합전 단순지시된 사각판과 원통쉘의 응답을 얻기 위하여 고전적 판이론과 Love의 얇은 쉘이론에 기초한 에너지법을 적용하였다. 결합구조물의 해석에는 동적응답법을 적용하였고, 길이방향 판과 쉘의 결합부에서의 동적 주기 하중과 모멘트는 Dirac 델타 함수와 정현 함수를 사용하였을 때 연속조건을 만족함을 보였다. 또한 원통쉘의 기하하적 매개변수인 쉘의 길이 대 반경비와 반경 대 두께비에 따른 진동특성의 변화를 고찰하였고, 복합재료의 섬유 방향각과 직교이방성 매개변수가 결합 원통쉘의 기본 진동수에 미치는 영향에 미치는 영향에 대하여 연구하였다.

  • PDF

Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers

  • Bidgoli, Mahmood Rabani;Karimi, Mohammad Saeed;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.713-733
    • /
    • 2015
  • In this paper, viscous fluid induced nonlinear free vibration and instability analysis of a functionally graded carbon nanotube-reinforced composite (CNTRC) cylindrical shell integrated with two uniformly distributed piezoelectric layers on the top and bottom surfaces of the cylindrical shell are presented. Single-walled carbon nanotubes (SWCNTs) are selected as reinforcement and effective material properties of FG-CNTRC cylindrical shell are assumed to be graded through the thickness direction and are estimated through the rule of mixture. The elastic foundation is modeled by temperature-dependent orthotropic Pasternak medium. Considering coupling of mechanical and electrical fields, Mindlin shell theory and Hamilton's principle, the motion equations are derived. Nonlinear frequency and critical fluid velocity of sandwich structure are calculated based on differential quadrature method (DQM). The effects of different parameters such as distribution type of SWCNTs, volume fractions of SWCNTs, elastic medium and temperature gradient are discussed on the vibration and instability behavior of the sandwich structure. Results indicate that considering elastic foundation increases frequency and critical fluid velocity of system.

LNG 지하 저장탱크 벽체의 비선형 열응력 해석 (Nonlinear Thermal Stress Analysis of In-ground LNG Storage Tank)

  • 곽효경;송종영;이광모
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.111-118
    • /
    • 2000
  • Concrete cracking due to the temperature gradient across the wall, caused by the difference in temperature between cryogenic liquid natural gas stored and surrounding environment of in-ground LNG storage tank, is investigated in this study. Crack propagation of concrete LNG tank is effectively simulated by using a layered degenerated shell element. In addition, material nonlinearity is taken into consideration on the basis of the nonlinear elastic-orthotropic model. Finally, numerical analysis for a real LNG storage tank is conducted with the objective to verify the efficiency of the introduced model.

  • PDF

강성분포가 주기성을 갖는 구형쉘의 형상계수에 따른 좌굴해석 (Buckling Analysis of Spherical Shells With Periodic Stiffness Distribution According to Shape Parameter)

  • 박상훈;석창목;정환목;권영환
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.169-175
    • /
    • 2004
  • Researches on spherical shell which is most usually applied have been completed by many investigators already and generalized numerical formula was derived. But the existent researches are limited to those on spherical shell with isotropic or orthotropic roof stiffness, periodic distribution of roof stiffness that can be caused by spherical and latticed roof system is not considered. Therefore, this paper is to develop a structural analysis program to analyze spherical shells that have periodicity of roof stiffness distribution caused by latticed roof of large space structure, grasp buckling characteristics and behavior of structure.

  • PDF

Free vibration analysis of composite conical shells using the discrete singular convolution algorithm

  • Civalek, Omer
    • Steel and Composite Structures
    • /
    • 제6권4호
    • /
    • pp.353-366
    • /
    • 2006
  • The discrete singular convolution (DSC) algorithm for determining the frequencies of the free vibration of single isotropic and orthotropic laminated conical shells is developed by using a numerical solution of the governing differential equations of motion based on Love's first approximation thin shell theory. By applying the discrete singular convolution method, the free vibration equations of motion of the composite laminated conical shell are transformed to a set of algebraic equations. Convergence and comparison studies are carried out to check the validity and accuracy of the DSC method. The obtained results are in excellent agreement with those in the literature.

Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.551-565
    • /
    • 2017
  • Based on the strain gradient theory (SGT), vibration analysis of an embedded micro cylindrical shell reinforced with agglomerated carbon nanotubes (CNTs) is investigated. The elastic medium is simulated by the orthotropic Pasternak foundation. The structure is subjected to magnetic field in the axial direction. For obtaining the equivalent material properties of structure and considering agglomeration effects, the Mori-Tanaka model is applied. The motion equations are derived on the basis of Mindlin cylindrical shell theory, energy method and Hamilton's principal. Differential quadrature method (DQM) is proposed to evaluate the frequency of system for different boundary conditions. The effects of different parameters such as CNTs volume percent, agglomeration of CNTs, elastic medium, magnetic field, boundary conditions, length to radius ratio and small scale parameter are shown on the frequency of the structure. The results indicate that the effect of CNTs agglomeration plays an important role in the frequency of system so that considering agglomeration leads to lower frequency. Furthermore, the frequency of structure increases with enhancing the small scale parameter.

얇은 원통형 쉘에 발생한 손상 규명 (A DAMAGE IDENTIFICATION METHOD FOR THIN CYLINDRICAL SHELLS)

  • 오혁진;조주용;이우식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.394-399
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion fur a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the dynamic equations of the damaged cylindrical shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations fer damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

  • PDF