Browse > Article
http://dx.doi.org/10.12989/scs.2012.12.4.275

Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior  

Darilmaz, Kutlu (Department of Civil Engineering, Istanbul Technical University)
Publication Information
Steel and Composite Structures / v.12, no.4, 2012 , pp. 275-289 More about this Journal
Abstract
In this paper the influence of stiffener location, rise/span ratio and fibre orientation on vibration behavior of corner supported hypar shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Benchmark problems are solved to validate the approach and free vibration response of stiffened orthotropic hypar shells is studied both with respect to fundamental frequency and mode shapes by varying the location of stiffeners, rise/span ratio and fiber orientation.
Keywords
stiffened hypar shell; assumed stress hybrid element; finite element; free vibration;
Citations & Related Records
연도 인용수 순위
1 Allman, D. J. (1984), "A compatible triangular element including vertex rotations for plane elasticity problems", Comp. Struct., 19(1-2), 1-8.   DOI
2 ANSYS. (1997), Swanson Analysis Systems, Swanson J. ANSYS 5.4. USA.
3 Bergan, P. G. and Felippa, C. A. (1985), "A triangular membrane element with rotational degrees of freedom", Comp. Methods Appl. Mech. Eng., 50(1), 25-69.   DOI   ScienceOn
4 Chakravorty, D., Bandyopadhyay, J.N. and Sinha, P.K. (1995), "Free vibration analysis of point-supported laminated composite doubly curved shells - A finite element approach", Comp. Struct., 54(2), 191-198.   DOI   ScienceOn
5 Choi, C. K. and Lee, W. H. (1996), "Versatile variable-node flat-shell element", J. Eng. Mech., 122(5), 432-441.   DOI
6 Civalek, O. (2007), "Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC)", Struct. Eng. Mech., 25(1), 127-130.   DOI
7 Cook, R. D. (1986), "On the Allman triangle and a related quadrilateral element", Comp. Struct., 22(6), 1065-1067.   DOI   ScienceOn
8 Nanda, N. and Bandyopadhyay, J.N. (2008), "Nonlinear transient response of laminated composite shells", J. Eng. Mech.-ASCE, 134(11), 983-990.   DOI   ScienceOn
9 Nayak, A.N. and Bandyopadhyay, J.N. (2002), "On the free vibration of stiffened shallow shells", J. Sound Vib., 255(2), 357-382.   DOI   ScienceOn
10 Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 12, 1333-1336.
11 Pian, T.H.H. and Chen, D.P. (1983), "On the suppression of zero energy deformation modes". Int. J. Num. Meth. Eng., 19(12), 1741-1752.   DOI   ScienceOn
12 Punch, E.F. and Atluri, S.N. (1984), "Development and testing of stable, isoparametric curvilinear 2 and 3-D hybrid stress elements", Comput. Meth. Appl. Mech. Eng., 47(3), 331-356.   DOI   ScienceOn
13 Sahoo, S. and Chakravorty, D. (2008), "Free vibration characteristics of point supported hypar shells-a finite element approach", Advances In Vibration Engineering, 7(2), 197-205.
14 Sahoo, S. and Chakravorty, D. (2006), "Stiffened composite hypar shell roofs under free vibration:Behaviour and optimization aids", J. Sound Vib., 295(1-2), 362-377.   DOI
15 Sahoo, S. and Chakravorty, D. (2005), "Finite element vibration characteristics of composite hypar shallow shells with various edge supports", J. Vib. Control, 11(10), 1291-1309.   DOI   ScienceOn
16 Sahoo, S. and Chakravorty, D. (2008), "Bending of composite stiffened hypar shell roofs under point load", J. Eng. Mech.-ASCE, 134(6), 441-454.   DOI   ScienceOn
17 Sinha, G. and Mukhopadhyay, M. (1994), "Finite element free vibration analysis of stiffened shells", J. Sound Vib., 171(4), 529-548.   DOI   ScienceOn
18 Schwarte, J. (1994), "Vibrations of corner point supported rhombic hypar-shells", J. Sound Vib., 175(1), 105-114.   DOI   ScienceOn
19 Wang, X.H. and Redekop, D. (2011). "Free vibration analysis of moderately-thick and thick toroidal shells", Struct. Eng. Mech., 39(4), 449-463.   DOI
20 Yunus, S.M. Saigal, S. and Cook, R.D. (1989), "On improved hybrid finite elements with rotational degrees of freedom", Int. J. Numer. Meth. Eng., 28(4), 785-800.   DOI   ScienceOn
21 Das, H.S. and Chakravorty, D. (2010), "A finite element application in the analysis and design of pointsupported composite conoidal shell roofs: suggesting selection guidelines", The Journal of Strain Analysis for Engineering Design, 45(3), 165-177.   DOI   ScienceOn
22 Darilmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215.   DOI
23 Darilmaz, K. ,(2005) "A hybrid 8-node hexahedral element for static and free vibration analysis", Struct. Eng. Mech., 21(5), 571-590.   DOI
24 Dogan, A. Arslan, H.M. and Yerli, H.R. (2010), "Effects of anisotropy and curvature on free vibration characteristics of laminated composite cylindrical shallow shells", Struct. Eng. Mech., 35(4), 493-510.   DOI
25 Ibrahimbegovic, A. Taylor, R.L. and Wison, E.L. (1990), "A robust quadrilateral membrane finite element with drilling degrees of freedom", Int. J. Numer. Methods Eng., 30(3), 445-457.   DOI
26 Feng, W. Hoa, S.V. and Huang, Q. (1997), "Classification of stress modes in assumed stress fields of hybrid finite elements", Int. J. Numer. Meth. Eng., 40(23), 4313-4339.   DOI   ScienceOn
27 Haldar, S. (2008). "Free vibration of composite skewed cylindrical shell panel by finite element method", J. Sound Vib., 311(1-2), 9-19.   DOI
28 Han, S.C. Kanok-Nukulchai, W. and Lee, W.H. (2011), "A refined finite element for first-order plate and shell analysis", Struct. Eng. Mech., 40(2), 191-213 .   DOI
29 Leissa, A.W. and Narita, Y. (1984), "Vibrations of corner point supported shallow shells of rectangular planform", Earthquake Engng. Struct. Dynam., 12(5), 651-661.   DOI
30 MacNeal, R.H. and Harder, R.L. (1988), "A refined four-noded membrane element with rotational degrees of freedom", Comp. Struct., 28(1), 75-84.   DOI   ScienceOn
31 Mukherjee, A. and Mukhopadhyay, M. (1988), "Finite element free vibration of eccentrically stiffened plates", Comp. Struct., 30(6), 1303-1317.   DOI   ScienceOn