• Title/Summary/Keyword: orthotropic bridge deck

Search Result 48, Processing Time 0.025 seconds

A Study for The Optimal Detail on Intersectin of Longitudinal-Transversal Rib in Orthotropic Steel Deck Bridge, Bulkhead Plate Reinforced. (벌크헤드 플레이트로 보강된 강바닥판교의 종리브-횡리브 교차연결부의 최적상세 연구)

  • 공병승;윤성운
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.177-184
    • /
    • 2004
  • Orthotropic steel deck bridge has much advantages such as the light deadweight, so the construction of orthotropic steel deck is profitable for the long-span bridges Although the system has a lot of merits, it happens some damages by the traffic density and the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest at the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF

Analysis Models for Automatic Design of Orthotropic Steel Deck Bridges (자동화설계를 위한 강상판교의 해석모델)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.363-372
    • /
    • 1999
  • This study proposes useful analysis models for automatic design of orthotropic steel deck bridges. For the selection of the best or the most proper analysis model this paper presents various analysis models based on grillage model, which are then compared with each other in terms of reliability of analysis, computing time and effectiveness. Also the selected analysis models are compared with Pelikan-Esslinger method well-known for orthotropic steel deck bridge analysis. The effectiveness of proposed analysis models is demonstrated by means of a numerical example that is a three-span continuous (60m+80m+60m=200m) orthotropic steel-box girder bridge.

  • PDF

Effects of Pavement Stiffness on the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향)

  • 이환우;박순호;이동준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.385-392
    • /
    • 2001
  • The stiffness of pavement is scarcely considered in structural analysis of the superstructure bridge. It will be reasonable in the case of asphalt concrete pavement over concrete deck plate because stiffness of the pavement compared with concrete deck plate can be ignored. Additionally, it is considered correct to do a design with a safety. However, various pavement materials which have even value reaching to the elastic modulus of concrete are applied to the orthotropic steel deck plate which has a relatively less stiffness comparing with the concrete deck plate. In this paper, the steel plate deck of the bridge of real project was modeled considering the pavement stiffness for the FEM analysis and the linear elastic analysis was performed. It was assumed to be perfectly bonded between the steel plate deck and the pavement and the temperature effect was ignored. It was analyzed on the vertical deflection of steel deck plate influencing to the serviceability of pavement and the bending stress of steel deck plate related to the fatigue life. As a result, It was indicated that the structural behavior of the orthotropic steel deck plate could be affected by the stiffness of pavement in some cases.

  • PDF

Study for the Improvement of Fatigue Crack on Intersection of Longitudinal- Transversal Rib in Orthotropic Steel Deck Bridge (강바닥판교의 종리브-횡리브 교차연결부의 피로균열 개선방안 연구)

  • Kong, Byung-Seung;Yun, Seong-Wun
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1084-1089
    • /
    • 2004
  • Recently, Orthotropic steel deck bridges, which have long span decks, have been regarded as one of economical as well as durable bridge types. However, Orthotropic steel deck bridge is used by a lot of welding, which may cause welding defect and deformation of connections. This kind of system happens some damages by the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest point because of the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that a study for the installing of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical system of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF

System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design (LRFD에 의한 강상판형교의 시스템 최적설계)

  • 조효남;민대홍;김현우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF

Development of Live Load Moment Equations Using Orthotropic Plate Theory (직교 이방성 판 이론을 이용한 바닥판 활하중 모멘트 산정식 개발)

  • Ahn Ye-Jun;Nam Suk-Hyun;Park Jang-Ho;Shin Yung-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.749-756
    • /
    • 2006
  • Because of the orthotropic elastic properties and significant two-way bending action, orthotropic plate theory may be suitable for describing the behavior of concrete filled grid bridge decks. Current AASHTO LRFD Bridge Design Specification(2004) has live load moment equations considering flexural rigidity ratio between longitudinal and transverse direction, but the Korea highway bridge design specification(2005) doesn't. The Korea highway bridge standard specification LRFD(1996) considers an orthotropic plate model with a single load to estimate live load moments in concrete filled grid bridge decks, which may not be conservative. This paper presents live load moment equations for truck and passenger car, based on orthotropic plate theory. The equations of truck model use multiple presence factor, impact factor, design truck and design tandem of the Korea highway bridge standard specification LRFD(1996). The estimated moments are verified through finite-element analyses.

  • PDF

A Study to Evaluate Performance of Poly-Urethane Polymer Concrete for Long-Span Orthotropic Steel Bridge (장경간 강바닥판 케이블교량에 적용하기 위한 폴리우레탄 폴리머콘크리트의 공용특성 연구)

  • Park, Heeyoung;Lee, Junghun;Kwak, Byeongseok;Choi, Iehyun;Kim, Taewoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES: The purpose of this study is to evaluate physical properties, durability, fatigue resistance, and long-term performance of poly-urethane concrete (PU) which can be possible application of thin layer on long-span orthotropic steel bridge and to check structural stability of bridge structure. METHODS : Various tests of physical properties, such as flexural strength, tensile strength, bond strength and coefficient of thermal expansion tests were conducted for physical property evaluation using two types of poly urethane concrete which have different curing time. Freezing and thawing test, accelerated weathering test and chloride ion penetration test were performed to evaluate the effect of exposed to marine environment. Beam fatigue test and small scale accelerated pavement test were performed to assess the resistance of PU against fatigue damage and long-term performance. Structural analysis were conducted to figure out structural stability of bridge structure and thin bridge deck pavement system. RESULTS: The property tests results showed that similar results were observed overall however the flexural strength of PUa was higher than those of PUb. It was also found that PU materials showed durability at marine environment. Beam fatigue test results showed that the resistances of the PUa against fatigue damage were two times higher than those of the PUb. It was found form small scale accelerated pavement test to evaluate long-term performance that there is no distress observed after 800,000 load applications. Structural analysis to figure out structural stability of bridge structure and thin bridge deck pavement system indicated that bridge structures were needed to increase thickness of steel deck plate or to improve longitudinal rib shape. CONCLUSIONS: It has been known that the use of PU can be positively considered to thin layer on long-span orthotropic steel bridge in terms of properties considered marine environment, resistance of fatigue damage and long-term performance.

Characteristic of Local Behavior in Orthotropic Steel Deck Bridge with Open Ribs according to Running Vehicle (주행차량에 따른 개단면 강바닥판 교량의 국부거동 특성)

  • Lee, Sung-Jin;Kyung, Kab-Soo;Park, Jin-Eun;Lee, Hee-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • The orthotropic steel deck bridge made by using relatively thin steel plate, and structural members such as transverse and longitudinal ribs, cross beam, etc. in the bridge are fabricated with complex shape by welding. Therefore, the possibility occurring deformation and defects by welding is very high, and stress states in the welded connection parts are very complex. Also, the fatigue cracks in orthotropic steel deck bridge are happening fromthe welded connection parts of secondary member than main member. However, stress evaluation for main members is mainly carried out in the design process of the bridge, detailed stress evaluation and characteristic analysis is not almost reviewed in the structural details which fatigue crack occurred. For the orthotropic steel deck bridge with open ribs which has been serviced for 29 years, in this study, the cause of fatigue crack is investigated and the fatigue safety of the bridge is examined based on fieldmeasurement by the loading test and real traffic condition. Also, structural analyses using gridmodel and detailed analysis model were carried out for the welded connection parts of longitudinal rib and diaphramthat fatigue crack occurred. Additionally, the behavior characteristics due to running vehicles were investigated by using influence area analysis for these structural details, and the occurrence causes of fatigue crack in the target bridge were clarified.

Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns (하중재하 패턴을 고려한 강바닥판의 정적거동 평가)

  • Kim, Seok Tae;Huh, Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • The deck of steel box girder bridges is composed of deck plate, longitudinal rib, and transverse ribs. The orthotropic steel decks have high possibility to fatigue damage due to numbers of welded connection part, the heavy contact loadings, and the increase of repeated loadings. Generally, the local stress by the repeated loadings of heavy vehicles causes the orthotropic steel deck bridge to fatigue cracks. The increase of traffic volume and heavy vehicle loadings are promoted the possibility of fatigue cracks. Thus, it is important to exactly evaluate the structural behavior of bridge considering the contact loading area of heavy vehicles and real load patterns of heavy trucks which have effects on the bridge. This study estimated the effect of contact area of design loads and real traffic vehicles through the finite element analysis considering the real loading conditions. The finite element analysis carried out 4 cases of loading patterns in the orthotropic steel deck bridge. Also, analysis estimated the influence of contact area of real truck loadings by the existence of diaphragm plate. The result of finite element analysis indicated that single tire loadings of real trucks occurred higher local stress than one of design loadings, and especially the deck plate got the most influence by the single tire loading. It was found that the diaphragm attachment at joint part of longitudinal ribs and transverse ribs had no effects on the improvement of structural performance against fatigue resistance in elastic analysis.

Fatigue study on additional cutout between U shaped rib and floorbeam in orthotropic bridge deck

  • Ju, Xiaochen;Zeng, Zhibin;Zhao, Xinxin;Liu, Xiaoguang
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.319-329
    • /
    • 2018
  • The field around additional cutout of the floor beam web in orthotropic bridge deck was subjected to high stress concentration, especially the weld toe between floor beam and U shaped rib and the free edge of the additional cutout. Based on different considerations, different geometrical parameters of additional cutout were proposed in European, American and Japanese specifications, and there remained remarkable differences among them. In this study, considering influence of out-of-plane deformation of floor beam web and U shaped rib, parameter analysis for additional cutout under typical load cases was performed by fine finite element method. The influence of additional cutout shape and height to the stress distribution around the additional cutout were investigated and analyzed. Meanwhile, the static and fatigue test on this structure details was carried out. The stress distribution was consistent with the finite element analysis results. The fatigue property for additional cutout height of 95mm was slightly better than that of 61.5 mm.