• Title/Summary/Keyword: orthorectification

Search Result 26, Processing Time 0.033 seconds

A study on the estimation of damage by storm and flood using satellite imagery (풍수해 피해규모 파악을 위한 위성영상의 활용방안 연구)

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Lee, Jung-Bin;Jin, Kyung-Hyuk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.111-114
    • /
    • 2007
  • One of future remote sensing techniques for the estimation of damage by storm and flood is the extraction of water area, which could be the basis of measuring the damage by storm and flood and estimate restoration cost. This paper introduces an approach to damage estimation using satellite Image. The project site was Ansung area and a set of Radarsat-1 SAR image at 6.25m resolution was used for the test. Authors investigated methods of SAR image processing such as shadow-effect removal, orthorectification of SAR image and calculation of damage area by flood. Consequetly, this study showed that technique improvement of image processing and the best of result for extracting water area. Also, found the new possibility of damage estimation using satellite image.

  • PDF

Comparison of SPOT5 Orthorectification Imagery Accuracy by DEM Scale (DEM축척에 따른 SPOT5영상의 정사보정 정확도 비교)

  • Lee Chong-Soo;Lee Sang-Ik;Lee Woo-Kyun;Jeon Seong-Woo;Kang Byung-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.319-322
    • /
    • 2006
  • 2002년 5월 촬영이 시작된 SPOTS 영상은 공간해상도가 2.5mX2.5m로 고해상도이면서도 촬영폭이 광역적이어서 다양한 활용이 가능하다. SPOT5영상을 보다 유용하게 활용하기 위해서는 단순 기하보정 보다는 높은 정확도를 얻을 수 있는 정사보정이 요구된다. 보정영상의 정확도에 영향을 미치는 요소로는 지형, GCP, DEM등이 있다. 본 연구에서는 다른 조건들은 동일하게 하고, 자료 구축에 많은 시간이 소요되는 DEM(수치표고모델)의 축척만을 달리하여 보정 영상의 정확도를 비교하였다. 그 결과 DEM의 축척 변화가 보정 영상에 미치는 영향은 미비한 것으로 나타났다. 따라서 작업의 효율성을 고려할 경우에 소축척의 DEM을 사용하는 것이 바람직하다.

  • PDF

Software Development for Orthorectification of High Resolution Satellite Imagery using DEM (DEM을 이용한 고해상 위성영상의 정사보정 소프트웨어 개발)

  • Heo, Jae-We;Ryu, Young-Soo;Choi, Joon-Soo;Hahn, Kwang-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.35-38
    • /
    • 2009
  • 본 논문은 KOMPSAT-2, KOMPSAT-3 등과 같은 고해상도 위성영상의 정사보정 방법과 그에 따른 시험용 소프트웨어 개발을 목표로 한다. 정사보정은 위성 카메라의 자세나의 지표의 피복인위에 의하여 발생하는 인위를 제거하여 정사투영 된 특성을 갖는 영상을 구하는 과정을 말한다. 정사보정을 위해서는 위성 카메라의 기하학적인 특성과 지표면의 관계식을 나타내는 공선조건 식으로부터 지상기준점 및 수치표고모델을 통하여 구해진다. 본 논문에서는 고해상도 위성영상의 정사보정 방법을 구현하고, 실제 위성영상 데이터에 적용하여 구현된 소프트웨어의 성능을 평가한다.

  • PDF

RPC MODEL FOR ORTHORECTIFYING VHRS IMAGE

  • Ke, Luong Chinh
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.631-634
    • /
    • 2006
  • Three main important sources for establishing GIS are the orthomap in scale 1:5 000 with Ground Sampling Distance of 0,5m; DEM/DTM data with height error of ${\pm}$1,0m and topographic map in scale 1: 10 000. The new era with Very High Resolution Satellite (VHRS) images as IKONOS, QuickBird, EROS, OrbView and other ones having Ground Sampling Distance (GSD) even lower than 1m has been in potential for producing orthomap in large scale 1:5 000, to update existing maps, to compile general-purpose or thematic maps and for GIS. The accuracy of orthomap generated from VHRS image affects strongly on GIS reliability. Nevertheless, orthomap accuracy taken from VHRS image is at first dependent on chosen sensor geometrical models. This paper presents, at fist, theoretical basic of the Rational Polynomial Coefficient (RPC) model installed in the commercial ImageStation Systems, realized for orthorectifying VHRS images. The RPC model of VHRS image is a replacement camera mode that represents the indirect relation between terrain and its image acquired on the flight orbit. At the end of this paper the practical accuracies of IKONOS and QuickBird image orthorectified by RPC model on Canadian PCI Geomatica System have been presented. They are important indication for practical application of producing digital orthomaps.

  • PDF

GENERATION OF DEM FROM CONTOURS FOR THE ORTHORECTIFICATION OF HIGH-RESOLUTION STELLITE IMAGES

  • Choi, Joon-Soo;Cha, Young-Min;Heo, Jae-Wee;Ryu, Young-Soo;Kim, Choen;Oh, Seung-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.7-10
    • /
    • 2008
  • We present a technique for constructing a digital elevation model (DEM) from contours. The elevation of each ground point in DEM is computed by interpolating the heights of the two adjacent contours of the point. The technique decomposes each sub-domain between adjacent contours into a set of sub-regions. The decomposition is accomplished by constructing a medial axis of the sub-domain. Each sub-region in the decomposition is classified into a variety of terrain features like hillsides, valleys, ridges, etc. The elevations of points are interpolated with different methods according to terrain features they belong to. For a given point in hillside, an approximate gradient line passing through the point is determined and the elevation of the point is interpolated from the known elevations of the two adjacent contours along the approximate gradient line. The univariate monotone rational Hermite spline is used for the interpolation. The DEM constructed by the technique is to be used to orthorectify the high-resolution KOMPSAT3 imagery.

  • PDF

Detecting and Restoring the Occlusion Area for Generating the True Orthoimage Using IKONOS Image (IKONOS 정사영상제작을 위한 폐색 영역의 탐지와 복원)

  • Seo Min-Ho;Lee Byoung-Kil;Kim Yong-Il;Han Dong-Yeob
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.131-139
    • /
    • 2006
  • IKONOS images have the perspective geometry in CCD sensor line like aerial images with central perspective geometry. So the occlusion by buildings, terrain or other objects exist in the image. It is difficult to detect the occlusion with RPCs(rational polynomial coefficients) for ortho-rectification of image. Therefore, in this study, we detected the occlusion areas in IKONOS images using the nominal collection elevation/azimuth angle and restored the hidden areas using another stereo images, from which the rue ortho image could be produced. The algorithm's validity was evaluated using the geometric accuracy of the generated ortho image.

1/10,000 Scale Digital Mapping using High Resolution Satellite Images (고해상도 위성영상을 이용한 축척 1/10,000 수치지도 제작)

  • Lee, Byung-Hwan;Kim, Jeong-Hee;Park, Kyung-Hwan;Chung, Il-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.2
    • /
    • pp.11-23
    • /
    • 2000
  • The subjects of this study are to examine and to apply the methods of making 1 : 10,000 scale digital maps using Russian's 2 m resolution satellite images of Alternative and 8 m resolution stereo satellite images of MK-4 for the Kyoha area of Paju-city where aerial-photo surveying is not possible. A digital elevation model (DEM) was calculated from MK-4 images. With this DEM, the Alternative images were orthorectified. Ground control points (GCP) were acquired from GPS surveyings and were used to perform geometric corrections on Alternative images. From field investigation, thematic attributes are digitized on the monitor. RMS errors of the planar and vertical positions are estimated to ${\pm}0.4$ m and ${\pm}15$ m, respectively. The planar accuracy is better than an accuracy required by NGIS (national GIS) programs. Local information from field investigation was added and the resulting maps should be good as base maps for, such as, regional and urban plannings.

  • PDF

Extracting Roof Edges of Small Buildings from Digital Aerial Photographs (수치항공사진으로부터 소형건물의 지붕 경계 추출)

  • Lee, Jin-Duk;Bhang, Kon-Joon;Kim, Sung-Hoon;Lee, Kyu-Dal
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.5
    • /
    • pp.425-435
    • /
    • 2014
  • The research for extracting man-made features such as building and road from the aerial photograph or satellite imagery has been performed actively. As lately the resolution of digital aerial photographs was improved, unwanted features(noise) would be often detected. An edge detection algorithm is developed to make up for such a noise problem, make boundaries of wanted objects clear and extract only needed features. The algorithm developed in this research performs separating RGB channels, differencing between channels, transforming in to binary images, excluding noises and restoring shapes, and edge extraction in order. The images to be used for edge detection are prepared through bundle adjustment, DTM extraction, orthorectification and mosaicking. The roof edges of small building on preprocessed digital aerial orthophotos were extracted using the algorithm developed in this study. The validity of the algorithms was proved by comparing edge results of small building extracted in this study with those of conventional methods.

Computation of 3D Coordinates from Stereo Images with RPCs (RPC를 이용한 Stereo 영상으로부터의 3차원 좌표 추출)

  • Kim Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • RPC(Rational Polynomial Camera) models have become the replacement model of choice for a number of high resolution satellite imagery providers. RPCs(Rational Polynomial Coefficients) provide a compact accurate representation of the ground to image geometry, allowing users to perform full photogrammetric processing of satellite imagery including block adjustment, 3D feature extraction and orthorectification. This paper presents an algorithm for 3D feature extraction using downhill simpler method which requires only function evaluations, not derivatives. The algorithm was implemented as an executable software program and tested using stereo IKONOS images of Seoul city. The results showed that the proposed algorithm was fast and accurate enough to be used as a practical method for the 3D feature extraction from stereo images with RPCs.

KOMPSAT Imagery Applications (다목적실용위성 영상 활용)

  • Lee, Kwang-Jae;Oh, Kwan-Young;Lee, Won-Jin;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1923-1929
    • /
    • 2021
  • Earth observation satellites are being used in various field and are being developed in many countries due to their high utility and marketability. Korea is developing various Earth observation satellites according to National Space Development Plan. Among them, the Korea Multi-Purpose Satellite(KOMPSAT) series is the most representative low-orbit satellite. So far, a total of five KOMPSAT have been launched to meet the national image demand and have been used in various fields, including national institutions. This special issue introduces research related to data processing, analysis, and utilization using various image data from the KOMPSAT series. Meanwhile, for the uninterrupted utilization of the subsequent KOMPSAT image data, data processing and utilization research suitable for high-resolution images must be continued, and related research contents will be continuously shared through a special issue.