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ABSTRACT:

We present a technique for constructing a digital elevation model (DEM) from contours. The elevation of each ground point in DEM
is computed by interpolating the heights of the two adjacent contours of the point. The technique decomposes each sub-domain
between adjacent contours into a set of sub-regions. The decomposition is accomplished by constructing a medial axis of the sub-
domain. Each sub-region in the decomposition is classified into a variety of terrain features like hillsides, valleys, ridges, etc. The
elevations of points are interpolated with different methods according to terrain features they belong to. For a given point in hillside,
an approximate gradient line passing through the point is determined and the elevation of the point is interpolated from the known
elevations of the two adjacent contours along the approximate gradient line. The univariate monotone rational Hermite spline is used
for the interpolation. The DEM constructed by the technique is to be used to orthorectify the high-resolution KOMPSAT3 imagery.
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1. INTRODUCTIONT

High-resolution satellite images are now widely used for a
variety of applications including general mapping,
photogrammetry, GIS data acquisition and visualization. Since
satellite images are distorted by the tilt of the satellite sensors
and the topographical variations in the surface, it is desirable
that the images are orthorectified to be used in the applications.
Orthorectification of satellite images is usually carried out by
utilizing resampling model using a digital elevation model
(DEM), or Rational Polynomial Coefficient (RPC), or both.
Since the RPC resampling method needs accurate, well-
distributed ground control points (GCPs), it is not practical in
forested mountain areas.

Digital elevation model (DEM) is a digital representation of
ground surface topography or terrain surface over a specified
area in the form of a raster grid and it consists of terrain
elevation for ground positions, sampled at equally spaced
intervals. In addition to the orthorectification of remote sensed
images, the DEM’s are utilized in support of modeling,
analyzing, visualizing, and interrogating topographic features.
DEM’s are generated from a variety of resources. DEM can be
generated by automatic DEM extraction from stereo satellite
scenes or stereo digital aerial photography. However, in
mountain areas, automatic extraction from stereo image is not
always satisfactory. In most cases, DEM for mountain areas are
provided by involving interpolation from pre-existing digital
contour maps which many have been produced by direct survey
of the terrain.

The general surface reconstruction of three-dimensional
object from a set of contours is to determine a surface that
approximates an unknown surface using geometric information
in the contours. The contours are usually terrain contours or
contours obtained from cross-sectional data of CT, MRI, or
range Sensors.

The general surface reconstruction from contours can be
broken into three subproblems: correspondence problem,
branching problem, and tiling problem (Meyers et al., 1992).
Correspondence problem is to determine which contours at a
given level must be connected to which contours of adjacent
levels. When a contour at a given level corresponds to a single
contour of an adjacent level it is called one-to-one
correspondence. When a contour corresponds to more than one
contour at adjacent level, it is called one-to-many
correspondence. The branching problem occurs when there is a
one-to-many, or many-to-many correspondence between
adjacent levels. It is to determine how to connect the
corresponding contours at adjacent levels. The tiling problem is
to construct a surface connecting a set of corresponding
contours with a triangular mesh.

In the terrain surface reconstruction from contours, only the
cases of one-to-one or one-to-many correspondences occur
since one contour encloses one or more adjacent contours
(Hormann et al., 2003; Zhang et al, 2005). The rather
complicated many-to-many correspondence or branching
structures do not occur in this problem. The problem of
extracting DEM from contours is simpler than terrain
reconstruction problem since the approximate surface does not
need to be constructed and the problem can be solved with the
correspondence and branching subproblems. (Gousie and
Franklin, 2003) presented a technique for creating DEM from
contours by constructing new intermediate contours in between
existing contours.

In this paper, we propose a new algorithm to construct DEM
from a set of terrain contours. The elevation of each ground
point is computed by interpolation from two adjacent contours
of the point. The algorithm consists of two steps. First, the
terrain features (hillsides, ridges, valleys, canyons, pits, and
peaks) are extracted from contours. These terrain features are
the most significant regional features to characterize and extract
from terrain mode! (Mascardi, 1998). Secondly, the elevations
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of points are interpolated with different methods according to
terrain features they belong to. For example, for a given point in
hillside, we determine an approximate gradient line from a
higher clevation position to a lower position that passes through
the point. Gradient lines should intersect contour lines
perpendicularly. The elevation of the point is interpolated from
the known elevations of the two adjacent contours along the
approximate gradient line. For the univariate interpolation
method, the monotone rational Hermite spline (Gregory and
Delbourgo, 1982; Hormann et al., 2003) is used.

2. GEOMETRIC PRELIMINARIES
2.1 Terrain Model by Contours

A contour is represented by a simple polygon and any point
on a contour has the same height value. Contours modeling
terrain has certain restrictions on the allowed geometrical
configurations. Terrain is modeled as strictly nested hierarchy
of contours: Any contour encloses an arbitrary number of other
contours, but is entirely contained within only one other
contour at the next hierarchical level, and any contour does not
intersect with other contours. Contour tree (Chen et al., 2005) is
a data structure to describe the hierarchical relationship among
contours. The correspondence problem to determine adjacent
contours to be connected together can be solved by utilizing the
contour tree (Hormann et al., 2003; Zhang et al., 2005).

Suppose that we are given a set of n contours {c;, ¢y, ..., C,}
in the plane where contour c¢; has height value 4; and c; lies
inside some c; with j < i for i 2 2. The outermost contour ¢;
encloses all the other contours and it partitions the plane into
two open sets, the unbounded domain €, and the domain
bounded by ¢; which in turn partitioned by other contours into
n disjoint open sets ;. Each sub-domain Q, has c; as an exterior
boundary and k; interior boundaries ¢; with j > i. For simplicity,
we suppose that all £; interior boundaries have the same height
and the height is different from that of ¢;.

* If k; = 0, then the sub-domain Q; has a local extremum
point and the sub-domain is a peak or a pit. We
differentiate them by considering the height relationship
between #; and 4; , where ¢; is an interior boundary of sub-
domain €. If ;> hj, then Q; is a peak and otherwise it is a
pit.

* If k; =1, then a contour ¢; corresponds to one contour c;, ;.
In this case, the sub-domain ; is a mixture of hillsides,
ridges, or valleys. Just like the peak and pit case, if &;,; >
h; , then Q; is a mixture of outbound hillsides and ridges;
otherwise it is a mixture of inbound hillsides and valleys.

¢ If k; > 1, then a contour ¢; corresponds to k; contours. This
case is called a one-to-many branching and it forms
complex terrain. The sub-domain Q; is a mixture of
hillsides, ridges, valleys, and canyons.

2.2 Medial Axis of a Polygon

The medial axis of a simple polygon P is the locus of all
centers of circles (called maximal circles) contained in P that
are tangent to P in two or more points. The medial axis is a
simple tree graph composed of vertices and edges, where edges
are either parabolic arcs or straight line-segments. The medial
axis is closely related to the generalized Voronoi diagram of
line-segments and their end points. The generalized Voronoi
diagram of edges and reflex vertices of a polygon is different to
the medial axis of the polygon only near reflex vertices of the
polygon. The medial axis does not have any edges leading to

reflex vertices, while the generalized Voronoi diagram always
have such edges. There exist optimal O(nlogn) algorithms to
compute the generalized Voronoi diagram of » line-segments
and hence the medial axis (Lee, 1982; Yap, 1987). For a simple
polygon with polygonal holes, the medial axis of the polygon
can be computed in O(n(logn+h)) time, where » is the number
of edges of the polygon and holes, and /4 is the number of holes
(Srinivasan, 1987). The medial axis of a polygon with holes is a
general planar graph with parabolic arcs or straight line-
segments (see Figure 1).

The edges and concave vertices of a polygon that are touched
by maximal circles are called active boundary elements. The
number of active boundary elements touched by a maximal
circle classifies the type of points on medial axis.

(1)  End points are the points of medial axis intersecting

with the boundary of a polygon.

(2)  Junction points are the centers of maximal circles
tangent to three or more active boundary elements.

(3)  Regular points are the centers of maximal circles
tangent to two boundary elements. A transition point is a
regular point where one of the active boundary element
changes.

End points, junction points, and transition points in the
medial axis are called key points. A segment of the medial axis
is the maximal subset of the medial axis associated with
uniquely with two distinct active boundary elements. Both end
points of a segment are key points.

Figure 1. Medial axis of a polygon with a hole. Dots are
junction and transition points on the medial axis.

3. TERRAIN FEATURE EXTRACTON FROM
CONTOURS

For each sub-domain Q, defined in a hierarchy of terrain
contours, the corresponding medial axis can be constructed. In
this case, the exterior contour of Q; is the polygon to define the
medial axis, and interior contours of €2; are holes in the polygon.

(Tang, 1992) proposed a method to extract linear or point
terrain features (ridge lines, valley lines, saddle points, etc.)
from a raster contour line image. It is based on raster operations
and makes use of a medial axis derived from contours.

Similar to the method proposed by Tang, we extract regional
terrain features (ridges, valleys, hillsides, canyons, pits and
peaks) using a medial axis transformation. For each sub-domain
Q,, the corresponding medial axis decomposes Q; into a set of
regions bounded by contours and medial axis edges (see Figure
1). In sub-domain €, consider drawing line-segments
connecting each junction point or transition point of medial axis
to tangent points on contours of the maximal circle centered at
the point. These line-segments decompose €; into a set of
regions and these regions are bounded by contours and the line-
segments. The decomposition of the sub-domain is called the
quasi-dual medial axis decomposition. Each region in the
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quasi-dual decomposition contains and matches exactly one
segment of medial axis and the region is called the
corresponding zowe of the segment (see Figure 2a).

In our approach, the identification of terrain feature is
derived from the quasi-dual decomposition. This can be
achieved by examining the structure of the medial axis. The
medial axis of a sub-domain €, is a general planar graph with
cycles. A maximally connected subset of edges not belonging to
any cycles of the medial axis is called a dangling subtree (see
Figure 2b). The sum of corresponding zones of all segments in a
dangling subtree corresponds to a ridge or a valley. The feature
to be identified depends on the relative heights of the bounding
contours. The zone of a segment in a cycle of medial axis may
create a ridge, a valley, or a canyon depending on the relative
heights of the bounding contours.

The zone of a segment of medial axis is classified according
to types of active boundary elements that define the segment.

(1)  Zone bounded by two boundary elements, one on
interior contour and one on exterior contour. The zone
corresponds to a hillside.

(2)  Zone bounded by two boundary elements on the same
exterior contour. The zone corresponds to a ridge.

(3)  Zone bounded by two boundary elements on the same
interior contours. The zone corresponds to a valley.

(4)  Zone bounded by two boundary elements on different
interior contours. The zone corresponds to a canyon.

Zone of segment ¢

Dangling subtree

(b)

Figure 2. (a) Quasi-dual medial axis decomposition (b)
Dangling subtree of medial axis and its corresponding ridge

4. INTERPOLATION METHOD

To interpolate the height of a point in a sub-domain of a set
of contours, the terrain feature they belong to has to be
determined beforehand. For a point in a terrain feature of ridge,
valley, or canyon, we can adopt the method by (Dakowicz and
Gold, 2003) to interpolate the heights of the point. In this paper,
we propose a new method to interpolate for a point in hillsides.

(Chai et al) proposed a method to obtain smooth terrain
surface by solving partial differential equations with contour
heights and gradient conditions. They assumed that a terrain
surface height function defined by contours is smooth so that
the height function can be governed by PDEs. The method they
proposed is based on the observation that terrain contour is very
similar to the potential contour in the 2D electric field generated

by some electrodes. Similar to the flux lines to describe the
electric field distribution, they modeled the gradient lines which
describe the paths of slopes on the surface from high elevation
points to low elevation points. The gradient lines are assumed to
obey similar properties of flux lines in electric field,;

(1)  (Orthogonality) The gradient lines and the contours

are orthogonal each other everywhere.

(2)  (Non-intersection) Gradient lines do not meet nor

branch out each other.

(3)  (Monotonicity) The height varies monotonously along

a gradient line between two neighboring contours with
different heights.

The usual interpolation method to compute the height of
point between contours is based on the ratio of shortest
distances from the point to both contours (see Figure 3a). The
new method we propose to interpolate the height of a point
between contours is done by computing an approximation of
gradient line that passes through the point. For a point p
between two consecutive contours, the nearest point p; on one
of the contours defines a maximal circle centered on medial axis
and the circle touches on the other contour at p,,;. The
approximate gradient line, called medial gradient line, passing
through p is defined by the two line segment [p;, ¢] and [c, p;+/],
where c is the center of the circle on the medial axis (see Figure
3b). Therefore any medial gradient line touches contours
orthogonally at everywhere. We can prove that medial gradient
lines between two contours of different heights do not intersect
by showing that the trajectories of two tangent points on
contours of maximal circles moving one direction along medial
axis segments move along the same and one direction along
contours. To preserve the monotonicity of gradient lines, we use
monotone Hermite interpolation method to compute the heights
of points on the gradient line.

(a) (bi
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Figure 3. (a) Shortest distances to contours from a point p (b)
Medial gradient line I passing through a point p

4.1 Monotone Hermite Interpolation

Suppose a medial gradient line I starts from a point p;,; on
contour ¢;; and ends at a point p; on contour ¢;. The height 4 of
any point p on I' can be computed by univariate interpolation
along the line I'. Let d, d;.; be distances from p to p;, p;.; along
the line T, respectively (see Figure 3b). The simplest kind of
univariate interpolation is linear interpolation defined as
follows:

h.d +hd.

1 i”it]

d,+d,

This linear interpolation results in undesirable artifacts
caused by first derivative discontinuities at contours. To
circumvent this problem and to produce a smoother behavior,



cubic interpolation scheme can be used since it offers continuity
at contours. But this interpolates heights outside the valid range
[4;, hiey] of heights on the gradient line T. To preserve the
monotonicity of height values, monotone interpolation methods
exploiting cubic Hermite spline (Fritsch and Carlson, 1980), or
rational two-point Hermite spline (Gregory and Delbourgo,
1982; Hormann et al., 2003), can be used. The spline proposed
by Gregory and Delbourgo on the gradient line I is as follow:

o Aat® + (g + g L=+ A b (-1’
Ait2 +(gi+l +gi)t(l_t)+Ai(1_t)2

where A;= (h;1—h;)/(di+d:1), and ¢ is the local coordinate given
by t = d; /(di+d). The g; are derivatives at p; where the
gradient line I" intersects ¢; (see Figure 4). If ¢; is not the
outermost nor the innermost contour, I' can extend to sub-
domains Qj+, €/, where c; is the exterior (interior) boundary of
Qf (€2)), respectively. Let hj+ (h;) be the height of the interior
(exterior) contour of Qf' (€2)), and let hf (h/) be the length of
the extended gradient line I' in the sub-domain Qf €«Q),
respectively. A suitable method for estimating the derivative is
_ h; —h;

£+
which is a central difference around p;, when j > 1. At the
boundary points on contours ¢; or ¢, , the derivatives can be
estimated by

g;

h =h _h-h

& =

£ » & 0

hj;

Figure 4. Derivative at a point on an interior contour

5. CONCLUSION

In this paper a new technique for computing the elevation of
a ground point to construct a digital elevation model (DEM)
from contours is proposed. The elevation is computed by
interpolating the heights of the two adjacent contours of the
point. The main contribution exists in the decomposition of
each sub-domain between adjacent contours into a set of sub-
regions and classifying each sub-region into a variety of terrain
features. The elevations of points are interpolated with different
methods according to terrain features they belong to. For
instance, in the case of hillside sub-region, a gradient line is
approximated with two line segments touching each adjacent
contour orthogonally and joining at medial axis of the sub-
domain. This type of approximate gradient line satisfies similar
properties of flux lines to describe electric field distribution.
The univariate monotone rational Hermite spline is used to
compute an approximate height of a point on the gradient line.
To improve the technique, it is need to refine approximation
method to interpolate for a point in other type of terrain features.
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