• 제목/요약/키워드: orthogonal basis

검색결과 144건 처리시간 0.024초

RBF-POD reduced-order modeling of DNA molecules under stretching and bending

  • Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • 제6권4호
    • /
    • pp.395-409
    • /
    • 2013
  • Molecular dynamics (MD) systems are highly nonlinear and nonlocal, and the conventional model order reduction methods are ineffective for MD systems. The RBF-POD method (Lee and Chen, 2013) employed a radial basis function (RBF) approximated potential energies and inter-atomic forces of MD systems under the framework of the proper orthogonal decomposition (POD) method for the reduced-order modeling of MD systems. In this work, we focus on the numerical procedures of the RBF-POD method and demonstrate how to apply this approach to the modeling of ds-DNA molecules under stretching and bending conditions.

A Fast Algorithm for Region-Oriented Texture Coding

  • Choi, Young-Gyu;Choi, Chong-Hwan;Cheong, Ha-Young
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.519-525
    • /
    • 2016
  • This paper addresses the framework of object-oriented image coding, describing a new algorithm, based on monodimensional Legendre polynomials, for texture approximation. Through the use of 1D orthogonal basis functions, the computational complexity which usually makes prohibitive most of 2D region-oriented approaches is significantly reduced, while only a slight increment of distortion is introduced. In the aim of preserving the bidimensional intersample correlation of the texture information as much as possible, suitable pseudo-bidimensional basis functions have been used, yielding significant improvements with respect to the straightforward 1D approach. The algorithm has been experimented for coding still images as well as motion compensated sequences, showing interesting possibilities of application for very low bitrate video coding.

PRECONDITIONING FOR THE p-VERSION BOUNDARY ELEMENT METHOD IN THREE DIMENSIONS WITH TRIANGULAR ELEMENTS

  • Cao, Wei-Ming;Guo, Benqi
    • 대한수학회지
    • /
    • 제41권2호
    • /
    • pp.345-368
    • /
    • 2004
  • A preconditioning algorithm is developed in this paper for the iterative solution of the linear system of equations resulting from the p-version boundary element approximation of the three dimensional integral equation with hypersingular operators. The preconditioner is derived by first making the nodal and side basis functions locally orthogonal to the element internal bases, and then by decoupling the nodal and side bases from the internal bases. Its implementation consists of solving a global problem on the wire-basket and a series of local problems defined on a single element. Moreover, the condition number of the preconditioned system is shown to be of order $O((1+ln/p)^{7})$. This technique can be applied to discretization with triangular elements and with general basis functions.

Complex Fuzzy Logic Filter and Learning Algorithm

  • Lee, Ki-Yong;Lee, Joo-Hum
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권1E호
    • /
    • pp.36-43
    • /
    • 1998
  • A fuzzy logic filter is constructed from a set of fuzzy IF-THEN rules which change adaptively to minimize some criterion function as new information becomes available. This paper generalizes the fuzzy logic filter and it's adaptive filtering algorithm to include complex parameters and complex signals. Using the complex Stone-Weierstrass theorem, we prove that linear combinations of the fuzzy basis functions are capable of uniformly approximating and complex continuous function on a compact set to arbitrary accuracy. Based on the fuzzy basis function representations, a complex orthogonal least-squares (COLS) learning algorithm is developed for designing fuzzy systems based on given input-output pairs. Also, we propose an adaptive algorithm based on LMS which adjust simultaneously filter parameters and the parameter of the membership function which characterize the fuzzy concepts in the IF-THEN rules. The modeling of a nonlinear communications channel based on a complex fuzzy is used to demonstrate the effectiveness of these algorithm.

  • PDF

Deformation performance analysis of thin plates based on a deformation decomposition method

  • Wang, Dongwei;Liang, Kaixuan;Sun, Panxu
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.453-464
    • /
    • 2022
  • Thin plates are the most common spatially stressed members in engineering structures that bear out-of-plane loads. Therefore, it is of great significance to study the deformation performance characteristics of thin plates for structural design. By constructing 12 basic displacement and deformation basis vectors of the four-node square thin plate element, a deformation decomposition method based on the complete orthogonal mechanical basis matrix is proposed in this paper. Based on the deformation decomposition method, the deformation properties of the thin plate can be quantitatively analyzed, and the areas dominated by each basic deformation can be visualized. In addition, the method can not only obtain more deformation information of the structure, but also identify macroscopic basic deformations, such as bending, shear and warping deformations. Finally, the deformation properties of the bidirectional thin plates with different sizes of central holes are analyzed, and the changing rules are obtained.

경량화를 위한 RBFr 메타모델 기반 A-필러와 패키지 트레이의 소재 선정 최적화 (Material Selection Optimization of A-Pillar and Package Tray Using RBFr Metamodel for Minimizing Weight)

  • 진성완;박도현;이갑성;김창원;양희원;김대승;최동훈
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, we propose the method of optimally selecting material of front pillar (A-pillar) and package tray for minimizing weight while satisfying vehicle requirements on static stiffness and dynamic stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness and dynamic stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the radial basis function regression (RBFr). Using the RBFr models, optimization is carried out an evolutionary algorithm that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 49.8% while satisfying all the design constraints.

직교 기저함수 기반의 혼합 신경회로망 구조 (Structure of the Mixed Neural Networks Based On Orthogonal Basis Functions)

  • 김성주;서재용;조현찬;김성현;김홍태
    • 전자공학회논문지CI
    • /
    • 제39권6호
    • /
    • pp.47-52
    • /
    • 2002
  • 웨이블릿 함수의 경우 스케일링 함수에서 비롯되었으며, 스케일과 중심을 결정함으로써 신경회로망의 노드로 구성된다. 본 논문에서는 웨이블릿 함수를 이용하여 망을 구성하는 과정에 스케일링 함수를 은닉층의 노드로 복합 구성한 구조를 제안하고자 한다. 제안한 구조의 특징은 스케일링 함수를 이용하여 대강 근사(rough approximation)를 행한 다음, 웨이블릿 함수를 이용하여 미세 근사(fine approximation)를 행하도록 신경회로망의 은닉층을 복합 구성하는 데 있다. 또한, 복합 신경회로망을 구성하는 과정에서 미세 근사에 필요한 웨이블릿 함수의 개수를 유전 알고리즘을 이용하여 결정하는 초기 구조의 최적화를 도모하고자 한다.

단일 RF chain을 갖는 전자 빔 조향 기생 배열 안테나를 사용한 빔 공간 MIMO 시스템 (Beamspace MIMO System Using ESPAR Antenna with single RF chain)

  • 안창영;이승환;유흥균
    • 한국통신학회논문지
    • /
    • 제38A권10호
    • /
    • pp.885-892
    • /
    • 2013
  • 최근 기존의 배열 안테나를 사용하는 MIMO(multi-input multi-output) 시스템의 단점을 극복하기 위하여 1개의 능동 소자와 주변의 기생 소자를 이용하는 ESPAR(electronically steerable parasitic array radiator) 안테나에 대한 연구가 이루어지고 있다. 이 안테나의 가장 큰 장점은 단지 1개의 RF(radio frequency) chain만을 사용하는 것이다. 단일 RF chain을 사용하기 때문에 하드웨어 복잡도가 높지 않다. ESPAR 안테나를 사용하는 빔 공간 MIMO 시스템의 경우 각각의 직교 기저 패턴에 심볼을 맵핑하여 송신한다. 본 논문에서는 저 복잡도, 저 전력의 MIMO 시스템을 위해 단일 RF chain을 사용하는 ESPAR 안테나를 이용하여 시스템을 구성하고 각각의 위상 편이 변조에 따른 성능을 분석한다. 빔 공간 MIMO 시스템은 기존의 MIMO 시스템과 유사한 성능을 낸다. BPSK(binary phase shift keying), QPSK(quadrature phase shift keying), 8PSK, 16PSK, 32PSK의 고차 변조에 대한 시스템 성능을 분석한 결과, 빔 공간 MIMO 시스템이 저 복잡도와 저 전력소비로 기존 신호 도메인의 MIMO 시스템과 유사한 성능 특성을 가지는 것을 확인하였다.

THE SENSITIVITY OF STRUCTURAL RESPONSE USING FINITE ELEMENTS IN TIME

  • Park, Sungho;Kim, Seung-Jo
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제3권1호
    • /
    • pp.66-80
    • /
    • 2002
  • The bilinear formulation proposed earlier by Peters and Izadpanah to develop finite elements in time to solve undamped linear systems, Is extended (and found to be readily amenable) to develop time finite elements to obtain transient responses of both linear and nonlinear, and damped and undamped systems. The formulation Is used in the h-, p- and hp-versions. The resulting linear and nonlinear algebraic equations are differentiated to obtain the first- and second-order sensitivities of the transient response with respect to various system parameters. The present developments were tested on a series of linear and nonlinear examples and were found to yield, when compared with results obtained using other methods, excellent results for both the transient response and Its sensitivity to system parameters. Mostly. the results were obtained using the Legendre polynomials as basis functions, though. in some cases other orthogonal polynomials namely. the Hermite. the Chebyshev, and integrated Legendre polynomials were also employed (but to no great advantage). A key advantage of the time finite element method, and the one often overlooked in its past applications, is the ease In which the sensitivity of the transient response with respect to various system parameters can be obtained. The results of sensitivity analysis can be used for approximate schemes for efficient solution of design optimization problems. Also. the results can be applied to gradient-based parameter identification schemes.

  • PDF

Adaptive Complex Interpolator for Channel Estimation in Pilot-Aided OFDM System

  • Liu, Guanghui;Zeng, Liaoyuan;Li, Hongliang;Xu, Linfeng;Wang, Zhengning
    • Journal of Communications and Networks
    • /
    • 제15권5호
    • /
    • pp.496-503
    • /
    • 2013
  • In an orthogonal frequency division multiplexing system, conventional interpolation techniques cannot correctly balance performance and overhead when estimating dynamic long-delay channels in single frequency networks (SFNs). In this study, classical filter analysis and design methods are employed to derive a complex interpolator for maximizing the resistible echo delay in a channel estimator on the basis of the correlation between frequency domain interpolating and time domain windowing. The coefficient computation of the complex interpolator requires a key parameter, i.e., channel length, which is obtained in the frequency domain with a tentative estimation scheme having low implementation complexity. The proposed complex adaptive interpolator is verified in a simulated digital video broadcasting for terrestrial/handheld receiver. The simulation results indicate that the designed channel estimator can not only handle SFN echoes with more than $200{\mu}s$ delay but also achieve a bit-error rate performance close to the optimum minimum mean square error method, which significantly outperforms conventional channel estimation methods, while preserving a low implementation cost in a short-delay channel.