• Title/Summary/Keyword: original order

Search Result 2,464, Processing Time 0.031 seconds

A response matrix method for the refined Analytic Function Expansion Nodal (AFEN) method in the two-dimensional hexagonal geometry and its numerical performance

  • Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2422-2430
    • /
    • 2020
  • In order to improve calculational efficiency of the CAPP code in the analysis of the hexagonal reactor core, we have tried to implement a refined AFEN method with transverse gradient basis functions and interface flux moments in the hexagonal geometry. The numerical scheme for the refined AFEN method adopted here is the response matrix method that uses the interface partial currents as nodal unknowns instead of the interface fluxes used in the original AFEN method. Since the response matrix method is single-node based, it has good properties such as good calculational efficiency and parallel computing affinity. Because a refined AFEN method equivalent nonlinear FDM response matrix method tried first could not provide a numerically stable solution, a direct formulation of the refined AFEN response matrix were developed. To show the numerical performance of this response matrix method against the original AFEN method, the numerical error analyses were performed for several benchmark problems including the VVER-440 LWR benchmark problem and the MHTGR-350 HTGR benchmark problem. The results showed a more than three times speedup in computing time for the LWR and HTGR benchmark problems due to good convergence and excellent calculational efficiency of the refined AFEN response matrix method.

Theoretical analysis of the projection of filtered data onto the quantization constraint set (양자화 제약 집합에 여과된 데이터를 투영하는 기법의 이론적 고찰)

  • 김동식;박섭형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1685-1695
    • /
    • 1996
  • The postprocessing of compressed images based on the projections onto convex sets and the constrained minimization imposes several constraints on the procesed data. The quantization constraint has been commonly used in various algorithms. Quantization is many-to-one mapping, by which all the dat in a quantization region are mapped to the corresponding representative level. The basic idea behind the projection onto the QCS(quantization constraint set) is to prevent the processed data from diverging from the original quantization region in order to redue the artifacts caused by filtering in postprocessing. However, there have been few efforts to analye the POQCS(projection onto the QCS). This paper analyzed mathematically the POQCS of filtered data from the viewpoint of minimizing the mean square error. Our analysis shows that a proper filtering technique followed by the POQCS can reduce the quantization distortion. In the conventional POQCS, the outside data of each quantization region are mapped into the corresponding boundary. Our analysis also shows that mappingthe outside data to the boundary of a subregion of the quantization region yields lower distortion than does the mapping to the boundary of the original region. In addition, several examples and discussions on the theory are introduced.

  • PDF

Seismic assessment and retrofitting of Pombalino buildings by pushover analyses

  • Meireles, Helena;Bento, Rita;Cattari, Serena;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.57-82
    • /
    • 2014
  • The heritage value of the mixed wood-masonry 18th century Pombalino buildings of downtown Lisbon is recognized both nationally and internationally. The present paper focuses on the seismic assessment of global response and retrofitting of a typical Pombalino building by nonlinear static analyses, performed by the research software Tremuri, which is able to model 3D configurations. The structure is modelled using nonlinear beams for masonry panels, while in case of the internal walls (frontal walls) an original formulation has been developed in order to take into account their specific seismic behaviour. Floors are modelled as orthotropic membrane finite elements: this feature allows to simulate the presence of both flexible and rigid diaphragms, being the first ones more representative of the original state while the second ones of retrofitted configurations. Seismic assessment has been evaluated by applying nonlinear static procedure and comparing the performance of different configurations (by considering various retrofitting strategies). Finally, assuming a lognormal cumulative distribution, fragility curves are obtained to be representative of Pombalino buildings: the most important application of such curves is for seismic risk and loss estimation analyses.

A Design of a High Performance Stream Processor without Superscalar Architecture (슈퍼스칼라 구조를 갖지 않는 고성능 Stream Processor 설계)

  • Lee, Kwan-Ho;Kim, Chi-Yong
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.77-80
    • /
    • 2017
  • In this paper, we proposed a way to improve performance of GP-GPU by deletion of superscalar issue from its original form. At first, we simplified the structure of stream processor in order to eliminate superscalar issue. Under this condition, preservation of hardware size and increasing of thread number were followed by functional improvement of GP-GPU. As the number of thread was getting larger, we proposed the new model of warp scheduler which adjusts the group of thread. This superscalar issue-deleted warp scheduler transferred the instructions to warp which was activated by Round Robin Scheduling. Performance comparison was conducted by Gaussian filtering and the results indicated that our newly designed GP-GPU showing 7.89 times better in its performance than original one.

Time- and Frequency-Domain Optimization of Sparse Multisine Coefficients for Nonlinear Amplifier Characterization

  • Park, Youngcheol;Yoon, Hoijin
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • For the testing of nonlinear power amplifiers, this paper suggests an approach to design optimized multisine signals that could be substituted for the original modulated signal. In the design of multisines, complex coefficients should be determined to mimic the target signal as much as possible, but very few methods have been adopted as general solutions to the coefficients. Furthermore, no solid method for the phase of coefficients has been proven to show the best resemblance to the original. Therefore, in order to determine the phase of multisine coefficients, a time-domain nonlinear optimization method is suggested. A frequency-domain-method based on the spectral response of the target signal is also suggested for the magnitude of the coefficients. For the verification, multisine signals are designed to emulate the LTE downlink signal of 10 MHz bandwidth and are used to test a nonlinear amplifier at 1.9 GHz. The suggested phase-optimized multisine had a lower normalized error by 0.163 dB when N = 100, and the measurement results showed that the suggested multisine achieved more accurate adjacent-channel leakage ratio (ACLR) estimation by as much as 12 dB compared to that of the conventional iterative method.

Pre-quantized Image Compression using Wavelet Transform (선 양자화법에 의한 웨이블릿 영상압축)

  • Piao, Yongri;Kim, Seok-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.405-408
    • /
    • 2005
  • This paper proposed the method to images of losses using restorable wavelet transformation. The algorithm proposed in this work stars by processing the pre-quantizer on the original images to organize an image that matches the gray level. The wavelet transformation filter to the original image which is already pre-quantized in order to segment bands. Considering the lowest coding of bands influencing the most to the overall condition of the reconstructed image, it only uses the Huffman coding using prediction. Reconstructed images by proposed algorithm showed higher PSNR when coding images of JPEG or non pre-quantized images. Applying pre-quantizer can control the peak errors and is expected to be useful at mass image compression.

  • PDF

Investigation into the Development of Technology for Orthopeadic Surgery Utilizing Reverse Engineering and Rapid Prototyping Technology (역공학과 쾌속조형공정을 이용한 정형외과수술기법 개발에 관한 연구)

  • 안동규;이준영;양동열;한길영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.188-196
    • /
    • 2004
  • The objective of this paper is to propose a new technology of the orthopaedic surgery using the combination of reverse engineering (RE) based on CT data and rapid prototyping (RP). The proposed technology utilizes symmetrical characteristics of the human body and capability of the combination of RE and RP, which rapidly manufactures three-dimensional parts from CT data. The original .stl data of injured extents are generated from the mirror transformation of .stl file fur uninjured extents. The physical shape before injuring is manufactured from RP using the original .stl data. Subsequently, pre-operative planning, such as a selection of proper implants, preforming of the implant, a decision of fixation locations and an insert position for the implant, an estimation of the invasive size, and pre-education of operators are performed using the physical shape. In order to examine the applicability and the efficiency of the proposed surgical technology, various case studies, such as a distal tibia commented fracture, a proximal tibia plateau fracture and an iliac wing fracture of pelvis, are carried out. From the results of case studies, it has been shown that the proposed technology is an effective surgical tool of the orthopaedic surgery reducing the operational time, the operational cost, the radiation exposure of the patient and operators, and morbidity. In addition, the proposed technology could improve the accuracy of operation and the speed of rehabilitation.

PARAFAC Tensor Reconstruction for Recommender System based on Apache Spark (아파치 스파크에서의 PARAFAC 분해 기반 텐서 재구성을 이용한 추천 시스템)

  • Im, Eo-Jin;Yong, Hwan-Seung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In recent years, there has been active research on a recommender system that considers three or more inputs in addition to users and goods, making it a multi-dimensional array, also known as a tensor. The main issue with using tensor is that there are a lot of missing values, making it sparse. In order to solve this, the tensor can be shrunk using the tensor decomposition algorithm into a lower dimensional array called a factor matrix. Then, the tensor is reconstructed by calculating factor matrices to fill original empty cells with predicted values. This is called tensor reconstruction. In this paper, we propose a user-based Top-K recommender system by normalized PARAFAC tensor reconstruction. This method involves factorization of a tensor into factor matrices and reconstructs the tensor again. Before decomposition, the original tensor is normalized based on each dimension to reduce overfitting. Using the real world dataset, this paper shows the processing of a large amount of data and implements a recommender system based on Apache Spark. In addition, this study has confirmed that the recommender performance is improved through normalization of the tensor.

Vehicle Face Re-identification Based on Nonnegative Matrix Factorization with Time Difference Constraint

  • Ma, Na;Wen, Tingxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2098-2114
    • /
    • 2021
  • Light intensity variation is one of the key factors which affect the accuracy of vehicle face re-identification, so in order to improve the robustness of vehicle face features to light intensity variation, a Nonnegative Matrix Factorization model with the constraint of image acquisition time difference is proposed. First, the original features vectors of all pairs of positive samples which are used for training are placed in two original feature matrices respectively, where the same columns of the two matrices represent the same vehicle; Then, the new features obtained after decomposition are divided into stable and variable features proportionally, where the constraints of intra-class similarity and inter-class difference are imposed on the stable feature, and the constraint of image acquisition time difference is imposed on the variable feature; At last, vehicle face matching is achieved through calculating the cosine distance of stable features. Experimental results show that the average False Reject Rate and the average False Accept Rate of the proposed algorithm can be reduced to 0.14 and 0.11 respectively on five different datasets, and even sometimes under the large difference of light intensities, the vehicle face image can be still recognized accurately, which verifies that the extracted features have good robustness to light variation.

Analysis of IT Service Quality Elements Using Text Sentiment Analysis (텍스트 감정분석을 이용한 IT 서비스 품질요소 분석)

  • Kim, Hong Sam;Kim, Chong Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.33-40
    • /
    • 2020
  • In order to satisfy customers, it is important to identify the quality elements that affect customers' satisfaction. The Kano model has been widely used in identifying multi-dimensional quality attributes in this purpose. However, the model suffers from various shortcomings and limitations, especially those related to survey practices such as the data amount, reply attitude and cost. In this research, a model based on the text sentiment analysis is proposed, which aims to substitute the survey-based data gathering process of Kano models with sentiment analysis. In this model, from the set of opinion text, quality elements for the research are extracted using the morpheme analysis. The opinions' polarity attributes are evaluated using text sentiment analysis, and those polarity text items are transformed into equivalent Kano survey questions. Replies for the transformed survey questions are generated based on the total score of the original data. Then, the question-reply set is analyzed using both the original Kano evaluation method and the satisfaction index method. The proposed research model has been tested using a large amount of data of public IT service project evaluations. The result shows that it can replace the existing practice and it promises advantages in terms of quality and cost of data gathering. The authors hope that the proposed model of this research may serve as a new quality analysis model for a wide range of areas.