• Title/Summary/Keyword: orientation error

Search Result 280, Processing Time 0.024 seconds

Design of Neodymium Permanent Magnetic Core using FEM (유한요소법을 이용한 네오디움 영구자석의 코어 설계)

  • Hur, Kwan-Do;Ye, Sang-Don
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Permanent magnets have recently been considered as device that can be used to control the behavior of mechanical systems. Neodymium magnets, a type of permanent magnet, have been used in numerous mechanical devices. These are permanent magnets made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. The magnetic selection, magnet core design and mechanical errors of the magnetic component can affect the performance of the magnetic force. In this study, the coercive force, residual induction, and the dimensions of the design parameters of the magnet core are optimized. The design parameters of magnet core are defined as the gap between the magnet and the core, the upper contact radius, and the lower thickness of the core. The force exercised on a permanent magnet in a non-uniform field is dependent on the magnetization orientation of the magnet. Non-uniformity of the polarization direction of the magnetic has been assumed to be caused by the angular error in the polarization direction. The variation in the magnetic performance is considered according to the center distance, the tilt of the magnetic components, and the polarization direction. The finite element method is used to analyze the magnetic force of an optimized cylindrical magnet.

A New Device and Procedure for Kinematic Calibration of Parallel Manipulators

  • Rauf, Abdul;Kim, Sung-Gaun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1615-1620
    • /
    • 2003
  • Kinematic calibration is a process whereby the actual values of geometric parameters are estimated so as to minimize the error in absolute positioning. Measuring all components of Cartesian posture, particularly the orientation, can be difficult. With partial pose measurements, all parameters may not be identifiable. This paper proposes a new device that can identify all kinematic parameters with partial pose measurements. Study is performed for a six degree-of-freedom fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector's motion to five degree-of-freedom and can measure position of the end-effector and one of its rotations. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise. Intrinsic inaccuracies of the device can significantly deteriorate the calibration results. A measurement procedure is proposed and formulations of cost functions are discussed to prevent propagation of the inaccuracies to the calibration results.

  • PDF

Map Building and Localization Based on Wave Algorithm and Kalman Filter

  • Saitov, Dilshat;Choi, Jeong Won;Park, Ju Hyun;Lee, Suk Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • This paper describes a mapping and localization based on wave algorithm[11] and Kalman filter for effective SLAM. Each robot in a multi robot system has its own task such as building a map for its local position. By combining their data into a shared map, the robot scans actively seek to verify their relative locations. For simultaneous localization the algorithm which is well known as Kalman Filter (KF) is used. For modelling the robot position we wish to know three parameters (x, y coordinates and its orientation) which can be combined into a vector called a state variable vector. The Kalman Filter is a smart way to integrate measurement data into an estimate by recognizing that measurements are noisy and that sometimes they should ignored or have only a small effect on the state estimate. In addition to an estimate of the state variable vector, the algorithm provides an estimate of the state variable vector uncertainty i.e. how confident the estimate is, given the value for the amount of error in it.

  • PDF

Wall-Following Control of a Two-Wheeled Mobile Robot

  • Chung, Tan-Lam;Bui, Trong-Hieu;Kim, Sang-Bong;Oh, Myung-Suck;Nguyen, Tan-Tien
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1288-1296
    • /
    • 2004
  • Wall-following control problem for a mobile robot is to move it along a wall at a constant speed and keep a specified distance to the wall. This paper proposes wall-following controllers based on Lyapunov function candidate for a two-wheeled mobile robot (MR) to follow an unknown wall. The mobile robot is considered in terms of kinematic model in Cartesian coordinate system. Two wall-following feedback controllers are designed: full state feedback controller and observer-based controller. To design the former controller, the errors of distance and orientation of the mobile robot to the wall are defined, and the feedback controller based on Lyapunov function candidate is designed to guarantee that the errors converge to zero asymptotically. The latter controller is designed based on Busawon's observer as only the distance error is measured. Additionally, the simulation and experimental results are included to illustrate the effectiveness of the proposed controllers.

011-line Visual Feedback Control of Industrial Robot Manipulator (산업용 로봇 매니퓰레이터의 오프라인 영상피드백 제어)

  • 신행봉;정동연;김용태;이종두;이강두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.567-572
    • /
    • 2002
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS ). We can save much efforts and time in adjusting robots to newly defined workcells by using Off-Line Programming System. A proposed visual calibration scheme is based on position-based visual feedback. The visual calibration system is composed of a personal computer, an image processing board, a video monitor, and one camera. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

The Accuracy of Stereo Digital Camera Photogrammetry (스테레오 디지털 카메라를 이용한 사진측량의 정확도)

  • Kim, Gi-Hong;Youn, Jun-Hee;Park, Ha-Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.663-668
    • /
    • 2010
  • In this study a stereo digital camera system was developed. Using this system, we can collect informations such as coordinates, lengths of all objects shown in the photo image just by taking digital photograph in field. This system has the advantage of obtaining stereo images with settled exterior orientation parameters, while the accuracy slightly worsen because in a close range photogrammetry with stereo digital camera system, the base line distance is restricted within about 1m. We took images with various exposure distances and angles to objects for experimental error assessment, and analyzed the affection of image coordinates errors.

Off-line Visual Feedback Control of Robot Manipulator (로봇 매니퓰레이터의 오프라인 영상피드백 제어)

  • 신행봉;정동연;이종두;이강두;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.140-145
    • /
    • 2001
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS). We can save much efforts and time in adjusting robots to newly defined workcells by using Off-Line Programming System. A proposed visual calibration scheme is based on position-based visual feedback. The visual calibration system is composed of a personal computer, an image processing board, a video monitor, and one camera. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

A Real-Time Control of SCARA Robot Based Image Feedback (이미지 피드백에 의한 스카라 로봇의 실시간 제어)

  • Lee, Woo-Song;Koo, Young-Mok;Shim, Hyun-Seok;Lee, Sang-Hoon;Kim, Dong-Yeop
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.54-60
    • /
    • 2014
  • The equipment of SCARA robot in processing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS). We can save much efforts and time in adjusting robots to newly defined workcells by using OLPS. A proposed visual calibration scheme is based on position-based visual feedback. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not requirethe precise calculation of tree-dimensional object data and image Jacobian.

A Adaptive and Fuzzy control of Inspection robot for Underground Pipes (지하매설파이프 검사로봇의 적응퍼지 위치 제어)

  • Kim, Do-Woo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.670-673
    • /
    • 1999
  • In this paper, we present a robust motion controller based on Adaptive-Fuzzy technique is proposed that multifunctional vehicle(MVR) for two DOF mobile robot can perform detailed inspection of physical conditions of sewage pipes as well as can effectively repair the damaged portions of the inner walls. The main difficulties in controlling this multifunctional robot vehicles lie in the fact that vehicles usually have three degrees of freedom in position and orientation in spite of having only two degrees of freedom for motion control in tracking mode. Decomposition of error between the reference posture and the current posture makes control of speed and steering possible. The Gyro compass part and Inclonometer of the robot is configured in order to realize position of robot. The proposed Adaptive-Fuzzy motion controller has two main characteristics: The one guarantees that the MVR follows the reference trajectory; the other one compensates the dynamics of the MVR. Simulation results are provided to validate the proposed controller. Experiments have been used to verify the effectiveness and robustness of the motion controller.

  • PDF

A Study on Visual Feedback Control of a Dual Arm Robot with Eight Joints

  • Lee, Woo-Song;Kim, Hong-Rae;Kim, Young-Tae;Jung, Dong-Yean;Han, Sung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.610-615
    • /
    • 2005
  • Visual servoing is the fusion of results from many elemental areas including high-speed image processing, kinematics, dynamics, control theory, and real-time computing. It has much in common with research into active vision and structure from motion, but is quite different from the often described use of vision in hierarchical task-level robot control systems. We present a new approach to visual feedback control using image-based visual servoing with the stereo vision in this paper. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method for dual-arm robot made in Samsung Electronics Co., Ltd.

  • PDF