• Title/Summary/Keyword: orientation distribution function (ODF)

Search Result 12, Processing Time 0.019 seconds

Relationship between Fiber Orientation Distribution Function and Mechanical Anisotropy of Thermally Point-Bonded Nonwovens

  • Kim, Han-Seong
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.177-181
    • /
    • 2004
  • Current efforts to establish links between geometrical features and mechanical performance of nonwoven fabrics in general, and of point-bonded (spot-bonded) nonwovens in particular has been made using the measurements of Fiber Orientation Distribution Function (ODF) and tensile modulus which occurs during controlled-deformation experiments. Image analysis technique (using the Fast Fourier Transform) was used to quantify the fiber orientation distribution. The results suggest that, within a typical window of processing conditions, the fiber orientation has a significant influence on the anisotropical behavior of nonwoven. The data also suggest that mechanical anisotropy of thermally point-bonded nonwovens is likely to be governed by different load transfer mechanism according to the applied macroscopic tensile direction.

Studies on the Fiber Orientation Distribution Function and Mechanical Anisotropy of Thermally Point-Bonded

  • Kim, Han-Seong
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.75-76
    • /
    • 2003
  • Current efforts to establish links between geometrical features and mechanical performance of nonwoven fabrics in general, and of point-bonded (spot-bonded) nonwovens in particular, would be served significantly by the measurements of Fiber Orientation Distribution Function (ODF) and tensile modulus which occurs during controlled-deformation experiments. Image analysis technique (using the Fast Furier Transform) is used to quantify the fiber orientation distribution. The results suggest that, within a typical window of processing conditions, ODF has a significant influence on the mechanical anisotropy. The data also suggest that mechanical anisotropy of thermally point-bonded nonwovens is likely to be governed by different stress mode according to the applied macroscopic tensile direction.

  • PDF

Development of Texture in Aluminum 1100 Sheets during Asymmetrical Rolling. (비대칭 압연시 알루미늄 1100 판재에서 집합조직 형성)

  • 지영규;정효태;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.105-108
    • /
    • 2003
  • Sheets of aluminum alloy 1100 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed. The evolution of texture components during asymmetrical rolling was investigated by the calculation of the orientation distribution function (ODF) using the monoclinic sample symmetry. The strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the aluminum sheet.

  • PDF

Development of Deformation Texture in Aluminum Sheets during Asymmetrical Rolling with a Roll Speed Ratio of 1.5/l.0 (롤속도 비 1.5/l.0 비대칭 압연 시 알루미늄 판재에서 변형집합조직의 형성)

  • 지영규;정효태;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2003
  • Sheets of aluminum alloy 1100 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed with a roll speed ratio of 1.5/l.0. The evolution of texture components during asymmetrical rolling was investigated by the calculation of the orientation distribution function (ODF) using the monoclinic sample symmetry. The strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the aluminum sheet.

Effect of Initial Orientation and Austenitic Phase on Texture Evolution in Ferritic Stainless Steels (페라이트계 스테인레스강의 집합조직 형성에 미치는 초기 방위 및 오스테나이트사의 영향)

  • 이용득
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03a
    • /
    • pp.149-152
    • /
    • 1999
  • The effect of initial orientation on the microstructure and texture evolution of two ferritic stainless steels was investigated. the columnar and equiaxed crystal specimens which were prepared from continuous casting slab were hot rolled annealed cold rolled and annealed respectively. The rolling and recrystallization textures at each process stage were examined by orientation distribution function (ODF) and electron back-scattered diffraction (EBSD); The observation showed that the orientation density of the $\alpha$-fibre of hot rolled band of columnar crystal specimen was more pronounced than that of the equaxed one at the center layer. Nevertheless the cold rolled textures of Type 430 steel have demonstrated a rather similar development . Compared to Type 430 steel the development of the $\alpha$-fibre in the center layer of Type 409L steel was much more pronounced. The relation between texture evolution and ridging behaviour has been discussed.

  • PDF

Changes in Microstructure and Texture during Annealing of 0.015% C-1.5% Mn-0~0.5% Mo Steels (0.015% C-1.5% Mn-0~0.5% Mo 강의 어닐링과정에서 미세조직과 집합조직의 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.251-261
    • /
    • 2011
  • The changes in microstructure and texture during annealing were examined in a series of 0.015% C-1.5% Mn cold-rolled sheet steels with 0~0.5% Mo. Orientation distribution function data were calculated from the (110), (200), (211) pole figures determined on the rolled plane of cold-rolled and annealed steel sheets. Regardless of Mo content and annealing conditions, martensite volume fraction was less than 1.0%, not affecting the texture evolution. Textural change at the cooling stage after heating at $820^{\circ}C$ for 67 sec was not observed. Increasing the Mo content and annealing temperature markedly strengthened the intensities of ${\gamma}$-fiber texture, resulting in the increase in $r_m$ value. The desirable texture evolution for deep drawability in the 0.5% Mo steel may be mainly caused by the grain refining effect of Mo carbide in the hot-rolled steel sheet.

Texture Development in Liquid-Phase-Sintered β -SiC by Seeding with β -SiC Whiskers

  • Kim, Won-Joong;Roh, Myong-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.152-155
    • /
    • 2006
  • Silicon carbide ceramics seeded with 10-30 wt% SiC whiskers are fabricated by hot pressing and annealing. A quantitative texture analysis including calculation of the Orientation Distribution Function (ODF) is used for obtaining the degrees of preferred orientation of the fabricated samples. The microstructure and crystallographic texture are discussed with respect to the effect of ${\beta}-SiC$ whisker seeds on the resulting fracture toughness values. The SEM microstructures and the texture data reveal a correlation between texture and fracture toughness anisotropy.

Effect of Deformation Parameters on The Evolution of Strain State During Asymmetrical Rolling in Aluminum Sheet (알루미늄 판재의 비대칭 압연 시 변형률 상태에 미치는 압연 변수의 영향)

  • Kang H. G.;Park S. H.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.460-462
    • /
    • 2005
  • Asymmetrical rolling was performed with different working roll speeds of upper and lower rolls. In order to promote the shear deformation during asymmetrical rolling, various deformation parameters of initial sheet thickness, rolling reduction, roll speed ratio and roll radius are considered. The evolution of texture during asymmetrical rolling was shown by the calculation of orientation distribution function (ODF). The effect of deformation parameters on shea. deformation were investigated by simulations with the finite element method (FEM). Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the sheet.

  • PDF

Goss Texture Development of Asymmetrically Rolled IF Steel Sheet (비대칭 압연한 IF 강 판의 Goss 집합조직 발달)

  • Kim, I.;Nam, S.K.;Kim, G.H.;Lee, D.N.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.150-155
    • /
    • 2017
  • To obtain the Goss texture, {110}<001>, IF steel sheets were asymmetrically rolled by 50-89% reduction in the thickness at room temperature and subsequently annealed at 200, 900, and $1200^{\circ}C$ in a box furnace under air atmosphere. The asymmetrically rolled specimens and annealed specimens show well-developed Goss texture, {110}<001>. After the IF steel sheets were asymmetrically rolled at room temperature and subsequently annealed at $900^{\circ}C$ for 1 h in a box furnace under air atmosphere, the intensity of the Goss texture, {110}<001> was high in the IF steel sheets.

Effect of thermo-mechanical treatment on fabrication of Ag tapes for YBCO coated conductor (차세대 선재 기판용 Ag 테이프의 제조공정에서 가공 열처리가 집합조직에 미치는 영향)

  • Lee, N.J.;Oh, S.S.;Park, C.;Song, K.J.;Ha, D.W.;Kwon, Y.K.;Ryu, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.46-49
    • /
    • 2002
  • The aim of this paper is to investigate the influence of various deformation ratio on texture of Ag tapes that can be used as a RE-$Ba_2Cu_3O_{7-{\delta}}$ coated conductor tapes without any buffer layer. We fabricated as-rolled Ag substrate with various deformation ratio per step. Thickness and total deformation ratio of Ag tapes were $100{\mu}m$ and >98%, respectively. And as-rolled Ag substrate was annealed at $750^{\circ}C$ for 30min. The as-rolled and recrystallization textures were measured using x-ray pole figures and orientation distribution function (ODF) analysis. With the increase of rolling ratio from 5 to 20%, deformation texture are changed from {1l0}<311> to {1l0}<112>, {032}<100>, {051}<211>. After recrystallization by annealing, main texture was observed to {013}<100> under present condition.

  • PDF