• Title/Summary/Keyword: oriC DNA

Search Result 15, Processing Time 0.017 seconds

Identification of Six Single-Strand Initiation (ssi) Signals for Priming of DNA Replication in Various Plasmids

  • Jeong, Jin-Yong;Seo, Hak-Soo;Kim, Ho-Yeon;Cho, Moo-Je;Bahk, Jeong-Dong
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.336-341
    • /
    • 1995
  • Using a mutant M13 phage derivative lacking a great part of the complementary strand synthesis origin, we identified six single-strand initiation (ssi) signals for DNA replication in pACYC184, pLG214, pGKV21, and pDPT270 plasmids, and named them $ssiA_{YC}$, $ssiA_{LG}$, $ssiB_{LG}$, $ssiA_{KV}$, $ssiA_{PT}$, and $ssiB_{PT}$, respectively. Two of them were from pDPT270, one from downstream the on of pACYC184, two from pLG214, one from upstream the plus origin of pGKV21. Introduction of these ssi signals into the deleted $ori_c$ site of a mutant filamentous M13 phage ($M13{\Delta}lac182$) resulted in the restoration of growth activity of this phage. These ssi signals were classified into a number of groups on the basis of sequence similarity. $ssiA_{YC}$ and $ssiA_{LG}$ show extensive sequence homology to the n'-site (primosome assembly sites) of ColE1, whereas $ssiB_{PT}$ is homologous to the n'-site of ${\Phi}X174$. $ssiA_{PT}$ belongs to G4-type ssi signals which require only dnaG primase and SSB protein for the priming of replication. In addition, possible biological roles of these ssi signals are discussed.

  • PDF

Analysis of nucleotide sequence of a novel plasmid, pILR091, from Lactobacillus reuteri L09 isolated from pig

  • Lee, Deog-Yong;Kang, Sang-Gyun;Rayamajhi, Nabin;Kang, Milan;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.4
    • /
    • pp.441-449
    • /
    • 2008
  • The genus Lactobacillus is the largest of the genera included in lactic acid bacteria and is associated with mucosal membranes of human and animal. Only a few Lactobacillus plasmid-encoded functions have been discovered and used. In this study, a novel plasmid (pILR091) was isolated from a wild L. reuteri isolated from pig and described the characteristics of its replicons, genetic organization, and relationship with other plasmids. After digestion of the plasmid, pILR091, with SalI, plasmid DNA was cloned into the pQE-30Xa vector and sequenced. The complete sequence was confirmed by the sequencing of PCR products and analyzed with the Genbank database. The isolate copy number and stability were determined by quantitative-PCR. The complete sequence of L. reuteri contained 7,185 nucleotides with 39% G-C content and one cut site by two enzymes, SalI and HindIII. The similar ori sequence of the pC194- rolling circle replication family (TTTATATTGAT) was located 63 bp upstream of the protein replication sequence, ORF 1. Total of five ORFs was identified and the coding sequence represented 4,966 nucleotides (70.4%). ORF1 of pILR091 had a low similarity with the sequence of pTE44. Other ORFs also showed low homology and E-values. The average G-C content of pILR091 was 39%, similar with that of genomic DNA. The copy number of pILR091 was determined at approximately 24 to 25 molecules per genomic DNA. These results suggested that pILR091 might be a good candidate to construct a new vector, which could be used for cloning and expression of foreign genes in lactobacilli.

Characterization of Plasmid pKJ36 from Bifidobacterium longum and Construction of an E. coli-Bifidobacterium Shuttle Vector

  • Park, Nyeong-Soo;Shin, Dong-Woo;Lee, Ke-Ho;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.312-320
    • /
    • 2000
  • Abstract The full sequence of the plasmid pKJ36, which was derived from Bifidobacterium longum KJ, was determined and analyzed to construct shuttle vectors between E. coli and Bifidobacterium. The plasmid pKJ36 was composed of 3,625 base pairs with a 65.1% G+C content. The structural organization of pKJ36 was highly similar to that of pKJ50, and the three major ORFs on pKJ36 showed high amino acid sequence homologies with those of pKJ50. The putative proteins coded by these three ORFs were designated as RepB (32.0 kDa, pI=9.25), MembB (29.0 kDa, pI=12.25), and MobB (39.0 kDa, pI=IO.66), respectively. The amino acid sequence of RepB showed a 57% identity and 70% similarity with that of the RepA protein of pKJ50. Upstream of the repB gene, the so-called iteron sequence was directly repeated four-and-ahalf times and a conserved dnaA box was identified. An amino acid sequence comparison between the MobB and MobA of pKJ50 revealed a 48% identity and 61 % similarity. A conserved oriT sequence with an inverted repeat identical to that of pKJ50 was also found upstream of the mobB gene. A hydropathy analysis of MembB revealed four possible transmembrane regions. The expressions of the repB and membB genes were confirmed by RT-PCR. The in vitro translation reaction of pKJ36 showed protein bands with anticipated sizes with respect to each putative gene product. S 1 endonuclease treatment and Southern hybridization suggested that pKJ36 replicates by a rolling circle mechanism via a single-stranded DNA (ssDNA) intermediate. A shuttle vector between E. coli and Bifidobacterium sp. was constructed using the pKJ36, pBR322, and staphylococcal chloramphenicol acetyl transferase (CAT) gene. The successful transformation of the Bifidobacterium strains was shown by Southern hybridization and PCR. The transformation efficiency differed from strain to strain and, depending on the electroporation conditions, with a range between $1.2{\times}10^1-2.6{\times}10^2{\;}cfu/\mu\textrm{g}$ DNA.X> DNA.

  • PDF

Effect of SeaR gene on virginiamycins production in Streptomyces virginiae (희소방선균 SeaR 유전자가 Streptomyces virginiae의 virginiamycins 생산에 미치는 영향)

  • Ryu, Jae-Ki;Kim, Hyun-Kyung;Kim, Byung-Won;Kim, Dong-Chan;Lee, Hyeong-Seon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.256-262
    • /
    • 2015
  • In order to study the effect of the receptor protein (SeaR), which is isolated from Saccharopolyspora erythraea, we introduced the SeaR gene to Streptomyces virginiae as host strains. An effective transformation procedure for S. virginiae was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP, and $ermEp^{\ast}$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. virginiae by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Transformants of S. virginiae containing the SeaR gene were confirmed by PCR and transcriptional expression of the SeaR gene in the transformants was analyzed by RT-PCR, respectively. And, we examined the production time of virginiamycins in the culture media of both the transformants and the wild type. The production time of virginiamycins in the wild type and transformants was the same. When 100 ng/ml of synthetic $VB-C_6$ was added to the state of 6 or 8 hour cultivation of wild type and transformants, respectively, the virginiamycins production was induced, meaning that the virginiamycins production in the wild type was detected 2 h early than transformants. From these results, SeaR expression was also affected to virginiamycins production in transformants derived from S. virginiae. In this study, we showed that the SeaR protein worked as a repressor in transformants.

Functional analysis of seaR protein identified from Saccharopolyspora erythraea (희소방선균의 seaR 단백질 발현을 통한 기능 분석)

  • Ryu, Jae Ki;Kwon, Pil-Seung;Lee, Hyeong Seon
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • Secondary metabolism in actinomycetes has been known to be controlled by a small molecule, ${\gamma}$-butyrolactone autoregulator, the binding of which to each corresponding receptor leads to the regulation of the transcriptional expression of the secondary metabolites. We expected that expression of an autoregulator receptor or a pleiotropic regulator in a non-host was to be gained insight of effective production of new metabolic materials. In order to study the function of the receptor protein (seaR), which is isolated from Saccharopolyspora erythraea, we introduced the seaR gene to Streptomyces coelicolor A3(2) as host strains. An effective transformation procedure for S. coelicolor A3(2) was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP and $ermEp^*$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. coelicolor A3(2) by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Exconjugant of S. coelicolor A3(2) containing the seaR gene was confirmed by PCR and transcriptional expression of the seaR gene in the transformant was analyzed by RT-PCR. In case of S. coelicolor A3(2), a phenotype microarray was used to analyze the phenotype of transformant compared with wild type by seaR expression. After that, in order to confirm the accuracy of the results obtained from the phenotype microarray, an antimicrobial susceptibility test was carried out. This test indicated that sensitivity of the transformant was higher than wild type in tetracycline case. These results indicated that some biosynthesis genes or resistance genes for tetracycline biosynthesis in transformant might be repressed by seaR expression. Therefore, subsequent experiments, analysis of transcriptional pattern of genes for tetracycline production or resistance, are needed to confirm whether biosynthesis genes or resistance genes for tetracycline are repressed or not.