DOI QR코드

DOI QR Code

Functional analysis of seaR protein identified from Saccharopolyspora erythraea

희소방선균의 seaR 단백질 발현을 통한 기능 분석

  • Ryu, Jae Ki (Department of Biomedical Laboratory Science, Gimcheon University) ;
  • Kwon, Pil-Seung (Department of Biomedical Laboratory Science, Wonkwang Health Science University) ;
  • Lee, Hyeong Seon (Department of Biomedical Laboratory Science, Jungwon University)
  • 류재기 (김천대학교 임상병리학과) ;
  • 권필승 (원광보건대학교 임상병리학과) ;
  • 이형선 (중원대학교 의료보건대학 임상병리학과)
  • Received : 2014.08.11
  • Accepted : 2015.01.19
  • Published : 2015.03.31

Abstract

Secondary metabolism in actinomycetes has been known to be controlled by a small molecule, ${\gamma}$-butyrolactone autoregulator, the binding of which to each corresponding receptor leads to the regulation of the transcriptional expression of the secondary metabolites. We expected that expression of an autoregulator receptor or a pleiotropic regulator in a non-host was to be gained insight of effective production of new metabolic materials. In order to study the function of the receptor protein (seaR), which is isolated from Saccharopolyspora erythraea, we introduced the seaR gene to Streptomyces coelicolor A3(2) as host strains. An effective transformation procedure for S. coelicolor A3(2) was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP and $ermEp^*$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. coelicolor A3(2) by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Exconjugant of S. coelicolor A3(2) containing the seaR gene was confirmed by PCR and transcriptional expression of the seaR gene in the transformant was analyzed by RT-PCR. In case of S. coelicolor A3(2), a phenotype microarray was used to analyze the phenotype of transformant compared with wild type by seaR expression. After that, in order to confirm the accuracy of the results obtained from the phenotype microarray, an antimicrobial susceptibility test was carried out. This test indicated that sensitivity of the transformant was higher than wild type in tetracycline case. These results indicated that some biosynthesis genes or resistance genes for tetracycline biosynthesis in transformant might be repressed by seaR expression. Therefore, subsequent experiments, analysis of transcriptional pattern of genes for tetracycline production or resistance, are needed to confirm whether biosynthesis genes or resistance genes for tetracycline are repressed or not.

방선균이 생산하는 이차대사산물은 자기조절인자(${\gamma}$-butyrolactone autoregulator)라고 불리는 저분자의 신호전달물질과 이에 특이적으로 결합하는 autoregulator receptor protein의 상호작용에 의해 조절되는 것으로 알려져 있다. 그러므로 non-host에 autoregulator receptor 혹은 pleiotropic regulator의 발현은 이차대사산물 혹은 새로운 대사화합물의 효율적인 생산을 유도할 것으로 기대된다. 희소방선균 Saccharopolyspora erythreae으로부터 receptor (seaR) 유전자의 기능을 연구하기 위해 다른 속의 균주인 Streptomyces coelicolor A3(2)로 seaR 유전자를 삽입하여 형질전환하였다. S. coelicolor A3(2)의 형질전환은 oriT, attP, $ermEp^*$과 seaR gene 단편을 가지고 있는 ${\Phi}C31$ 유래의 integration vector인 pEV615 (6.6 kb)를 이용하여 Escherichia coli ET12567/pUZ8002를 DNA 공여체로 이용한 접합전달법을 사용하여 확립하였다. seaR 유전자의 삽입 유무는 PCR방법으로 확인하였고, seaR 유전자의 전사 발현은 RT-PCR방법으로 확인하였다. S. coelicolor A3(2)의 경우 표현형 microarray 실험을 통하여 seaR 유전자의 발현에 따른 표현형의 변화를 확인하였다. 특히, 표현형 microarray 실험에 나타난 tetracycline 항생제 기질에 대하여 wild type이 transformant에 비해 빠르게 성장하는 것은 항균제 감수성 검사와 일치하였다. 이는 tetracycline 생합성 유전자 및 내성 유전자의 발현 억제에 따른 변화라고 예상할 수 있으며 이를 위하여 tetracycline 생합성 관련 유전자 및 내성 유전자의 발현 패턴 분석등과 같은 분자 수준에서의 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Alderson, G., Ritchie, D.A., Cappellano, C., Gool, R.H., Ivanova, N.M., Huddleston, A.S., Flaxman, C.S., Kristufek, V., and Lounes, A. 1993. Physiology and genetics of antibiotic production and resistance. Res. Microbiol. 144, 665-672. https://doi.org/10.1016/0923-2508(93)90072-A
  2. Bibb, M.J. 2005. Regulation of secondary metabolism in Streptomycetes. Curr. Opin. Microbiol. 8, 208-215. https://doi.org/10.1016/j.mib.2005.02.016
  3. Bierman, M., Logan, R., O'Brien, K., Seno, E.T., Rao, R.N., and Schoner, B.E. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
  4. Butler, M.J., Takano, E., Bruheim, P., Jovatic, S., Marinell, F., and Bibb, M.J. 2003. Deletion of scbA enhances antibiotic production in Streptomyces lividans. Appl. Microbiol Biotechnol. 61, 512-516. https://doi.org/10.1007/s00253-003-1277-8
  5. Choi, S.U., Lee, C.K., Hwang, Y.I., Kinishita, H., and Nihira, T. 2004. Intergeneric conjugal tansfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch. Microbiol. 181, 294-298. https://doi.org/10.1007/s00203-004-0654-8
  6. Combes, P., Till, R., Bee, S., and Smith, M.C.M. 2002. The Streptomyces genome contains multiple pseudo-attB sites for the ${\varphi}$C31-encoded site-specific recombination system. J. Bacteriol. 184, 5746-5752. https://doi.org/10.1128/JB.184.20.5746-5752.2002
  7. Flett, F., Mersinias, V., and Smith, C.P. 1997. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155, 223-229. https://doi.org/10.1111/j.1574-6968.1997.tb13882.x
  8. Horinouchi, S., Kito, M., Nishiyama, M., Furuya, K., Hong, S.K., Miyake, K., and Beppu, T. 1990. Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). Gene 95, 49-56. https://doi.org/10.1016/0378-1119(90)90412-K
  9. Hwang, J.H., Lee, C.K., Lee, K.M., Jo, B.K., Park, H.R., and Hwang, Y.I. 2005. Development of a recombinant Streptomyces griseus with sprA and sprB genes for proteolytic enzyme production. Kor. J. Microbiol. 41, 87-92.
  10. Kang, S.J., Lee, C.K., Choi, S.U., Kim, H.S. and Hwang, Y.I. 2006. In vivo function analysis of ${\gamma}$-butyrolactone autoregulator receptor gene(scaR) in Streptomyces clavuligerus. J. Life Science 16, 76-81. https://doi.org/10.5352/JLS.2006.16.1.076
  11. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. 2000. Practical Streptomyces Genetics. Norwich: The John Innes Foundation.
  12. Kitani, S., Bibb, M.J., Nihira, T., and Yamada, Y. 2000. Conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces lavendulae FRI-5. J. Microbiol Biotechnol. 10, 535-538.
  13. Lee, Y.J., Yeo, S.H., Lee, I.S., Lee, S.P., Kitani, S., Nihira, T., and Kim, H.S. 2006. Cloning and characterization of gene encoding ${\gamma}$-butyrolactone autoregulator receptor from Saccharopolyspora erythraea. J. Microbiol. Biotechnol. 16, 77-83.
  14. Mazodier, P., Petter, R., and Thompson, C. 1989. Intergeneric conjugation between Escherichia coli and Streptomyces species. J. Bacteriol. 171, 3583-3585. https://doi.org/10.1128/jb.171.6.3583-3585.1989
  15. Onaka, H., Ando, N., Nihira, T., Yamada, Y., Beppu, T., and Horinouchi, S. 1995. Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J. Bacteriol. 177, 6083-6092. https://doi.org/10.1128/jb.177.21.6083-6092.1995
  16. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual 2nd ed. New York, Cold Spring Harbor Laboratory, USA
  17. Smokvina, T., Mazodier, P., Boccard, F., Thompson, C.J., and Guerineau, M. 1990. Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94, 53-59. https://doi.org/10.1016/0378-1119(90)90467-6
  18. Takano, E. 2006. ${\gamma}$-Butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 9, 287-294. https://doi.org/10.1016/j.mib.2006.04.003

Cited by

  1. Effect of SeaR gene on virginiamycins production in Streptomyces virginiae vol.51, pp.3, 2015, https://doi.org/10.7845/kjm.2015.5030