• 제목/요약/키워드: organophosphate pesticide

검색결과 56건 처리시간 0.026초

Detection of Multi-class Pesticide Residues Using Surface Plasmon Resonance Based on Polyclonal Antibody

  • Yang, Gil-Mo;Kang, Suk-Won
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.547-552
    • /
    • 2008
  • The detection of carbamate (carbofuran, carbaryl, benfracarb, thiodicarb, and methomil) and organophosphate (diazinon, cadusafos, ethoprofos, parathion-methyl, and chlorpyrifos) pesticide residues with very low detection limits was carried out using surface plasmon resonance (SPR) based equipment. The capacity to develop a portable SPR biosensor for food safety was also investigated. The applied ligand for the immunoassays was polyclonal goat anti-rabbit immunoglobulin (IgG) peroxidase conjugate. Concentration tests using direct binding assays showed the possibility of quantitative analysis. For ligand fishing to find a proper antibody to respond to each pesticide, acetylcholinesterase (AChE), and glutathione-S-transferase (GST) were tested. The reproducibility and precision of SPR measurements were evaluated. With this approach, the limit of detection for pesticide residues was 1 ng/mL and analysis took less than 11 min. Thus, it was demonstrated that detecting multi-class pesticide residues using SPR and IgG antibodies provides enough sensitivity and speed for use in portable SPR biosensors.

유기인제 농약 분석 방법 (Multi-Pesticide Residue Method) 개발에 관한 연구 (Study on the Development of Analytical Method (Multi-Pesticide Residue Method) for Organophosphate Pesticides)

  • 이봉헌;김우성
    • 한국환경과학회지
    • /
    • 제6권2호
    • /
    • pp.183-187
    • /
    • 1997
  • 유기인제 농약을 70% acetone으로 추출한 다음 dlchloromethane 층으로 옮겨 추출물을 florisil로 충진된 open-column에서 chromatography를 행하였다. 마지막 추출물을 nitrogen-phosphorus detector(GC/NPD)을 가진 GC로 분석하였다. Narrow-bore capillary GC(Ultra-2)에 대해 18 가지의 유기인제 농약의 회수율이 88.7%에서 100.0%에 달하였다. 본 분석 방법의 최소 검출 준위는 0.019 - 0.035 mg/kg 이었으며 sample throughput(추출, open-column chro-matography 및 GC 분석)도 상당히 개선되었다.(sample당 8시간)

  • PDF

Effect of the Application of an Organophosphate Pesticide(Fenitrothion) on Foraging Behavior of Ants

  • Kwon, Tae-Sung
    • 한국산림과학회지
    • /
    • 제99권2호
    • /
    • pp.179-185
    • /
    • 2010
  • Organophosphate pesticides inhibit cholinesterase. It is likely that application of organophosphate pesticides affect behavior of arthropods. This study aimed to find changes in foraging behavior of ants due to application of fenitrothion, one of the widely used organophosphate pesticides. Foraging activity (FA) of ants was observed using bait cards in a pesticide sprayed pine stand and in an unsprayed stand before and after aerial application of fenitrothion in 2003 and 2004. Ant abundance and species richness of ants were also monitored using pitfall traps during the activity season in 2003 and 2004. There was not a significant decrease in abundance and species richness after the application of fenitrothion. However, FA of an ant, Paratrechina flavipes (Smith), which was abundant enough to be statistically compared, was depressed from 2 hours to 10 days after application of the pesticide. FA was fully recovered at day 14 in 2003, and was partially recovered at day 18 and fully at day 31 in 2004. FA of other ant species also decreased significantly during the FA depression period of P. flavipes. On the bait cards, workers of the species responded dully to baits during the FA depression period. Despite the decline in activity, alertness of P. flavipes to other species did not decrease even during the FA depression period.

고용량 아트로핀을 사용한 중증 유기인산염 중독 환자 증례 (A case of severe organophosphate poisoning used a high-dose atropine)

  • 이형주;문대식;정영윤;변준섭;김총명
    • 대한임상독성학회지
    • /
    • 제20권1호
    • /
    • pp.25-30
    • /
    • 2022
  • In this study, we report the case of a 59-year-old male patient with organophosphate pesticide poisoning. He visited the local emergency medical center after ingesting 250 ml of organophosphate pesticide. The patient's symptoms improved after the initial intravenous infusion of pralidoxime 5 g and atropine 0.5 mg. However, 18 hours after admission, there was a worsening of the symptoms. A high dose of atropine was administered to improve muscarinic symptoms. A total dose of 5091.4 mg of atropine was used for 30 days, and fever and paralytic ileus appeared as side effects of atropine. Anticholinergic symptoms disappeared only after reducing the atropine dose, and the patient was discharged on the 35th day without any neurologic complications.

유기농약 분석을 위한 Multi-Pesticide Residue Method (Multi-Pesticide Residue Method for Organopesticide Analysis)

  • 김우성;이봉헌
    • 한국환경과학회지
    • /
    • 제6권4호
    • /
    • pp.385-389
    • /
    • 1997
  • 농약 잔류물을 70% acetone으로 추출한 다음 dichloromethane 층으로 옮겨 추출물을 florisil과 alumina-N으로 충진시켜 column chromatography를 행하였다. 마지막 추출물을 electron-capture detector(GC/ECD)와 nitrogen-phosphorus detector(GC/NPD)를 가진 GC로 분석하였다. 분석 결과 17 가지의 유기염소계 농약과 15 가지의 유기인계 농약의 회수율이 각각 60.8 에서 84.9%와 70.5에서 100.0%의 범위이었으며(phosmet와 azlnphos-methyl은 제외) 본 분석 방법의 최소 검출 준위도 낮았다(0.021-0.058mg/kg).

  • PDF

절화장미 시설하우스에서 방제 작업시 농약의 피부노출 특성 (The characteristics of farmer's dermal exposure during pesticide spraying and dilution in cut rose greenhouse)

  • 김효철;김경란;이경숙;김경수;조경아
    • 한국산업보건학회지
    • /
    • 제17권3호
    • /
    • pp.203-211
    • /
    • 2007
  • This study was conducted in cut rose cultivation field in Goyang to evaluate pesticide exposure of farmers and the relationship between the exposure and work environment/method for cut rose farmers. Dermal exposure was assessed with patch (thin chromatography layer paper), cotton glove by body parts during mixing and spraying works in which pyrethroid, organophosphate, carbamate pesticide were used in 4 cut rose greenhouses located in Goyang province, checking characteristics of environment/working method at the same time. Body parts assessed were as follows ; glove : hand, patch : head, neck(front/back), chest, back, shoulder(right/left), upperarm(right/left), forearm(right/left), thigh(right/left), shin(right/left). Pesticides were analyzed using gas chromatography(NPD/FID) after extracting with ethyl acetate. Exposure amount differed according to pesticide type. But after standardizing with total net weight of pesticide sprayed, there were no significant difference among pesticides. There were significant difference in exposure amount among body parts(especially exposure amount of thigh, shin were more than the others), which means exposure happen not by pesticide dispersion in air but by contact with cut rose(leaf, branch) indirectly. Walking forward during spraying made farmers more exposed than waling backward, these results means contacts with leaves/branches made exposure happen in cut rose greenhouse also. As a result, pesticide exposure in cut rose greenhouse was related with contact of leaf/branch which pesticide remained in, which made exposure pattern (especially exposure amount) differ by body parts

Synthesis of Magnetic Sonophotocatalyst and its Enhanced Biodegradability of Organophosphate Pesticide

  • Lirong, Meng;Jianjun, Shi;Ming, Zhao;Jie, He
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3521-3526
    • /
    • 2014
  • A magnetic sonophotocatalyst $Fe_3O_4@SiO_2@TiO_2$ is synthesized for the enhanced biodegradability of organophosphate pesticide. The as-prepared catalysts were characterized using different techniques, such as X-ray diffraction (XRD) and transmission electron microscopy (TEM). The radial sonophotocatalytic activity of $Fe_3O_4@SiO_2@TiO_2$ nanocomposite was investigated, in which commercial dichlorvos (DDVP) was chosen as an object. The degradation efficiency was evaluated in terms of chemical oxygen demand (COD) and enhancement of biodegradability. The effect of different factors, such as reaction time, pH, the added amount of catalyst on $COD_{Cr}$ removal efficiency were investigated. The average $COD_{Cr}$ removal efficiency reached 63.13% after 240 min in 12 L sonophotocatalytic reactor (catalyst $0.2gL^{-1}$, pH 7.3). The synergistic effect occurs in the combined sonolysis and photocatalysis which is proved by the significant improvement in $COD_{Cr}$ removal efficiency compared with that of solo photocatalysis. Under this experimental condition, the $BOD_5/COD_{Cr}$ ratio rose from 0.131 to 0.411, showing a remarkable improvement in biodegradability. These results showed that sonophotocatalysis may be applied as pre-treatment of pesticide wastewater, and then for biological treatment. The synthesized magnetic nanocomposite had good photocatalytic performance and stability, as when it was used for the fifth time, the $COD_{Cr}$ removal efficiency was still about 62.38%.

살충제 중독환자에서 혈액관류가 혈중 살충제 농도에 미치는 영향 (The Effect of Hemoperfusion on Plasma Concentration of Toxins in Acute Pesticide Poisoned Patients)

  • 길효욱;양종오;이은영;홍세용
    • 대한임상독성학회지
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 2006
  • Purpose: Hemoperfusion is an effective modality of extracorporeal elimination of toxins in acutely poisoned patients. We evaluated the effect of hemoperfusion on plasma concentration of toxins in patients exposed to certain pesticides. Methods: Eleven patients who were acutely exposed to pesticides participated in our study. We measured plasma pesticide concentration from the whole blood obtained by arterial and venous sources by gas chromatography. Results: The plasma concentrations of only 3 patients was measured. Methidation clearance by hemoperfusion was 82.2%, fenitrothion was 23%, and endosulfan was 0% Conclusion: Measurement of plasma organophosphate concentration is not a practical application. Our results suggest that hemoperfusion is applicable in patients with pesticide intoxication according to clinical status.

  • PDF

시설 고추와 오이, 과수 재배 농업인의 유기인계 및 피레스로이드 살충제 노출 수준과 관련 농작업 특성 (Exposure Level to Organophosphate and Pyrethroid Pesticides and Related Agricultural Factors in Chili and Cucumber Cultivation among Greenhouse and Orchard Farmers)

  • 김신아;노상철
    • 한국환경보건학회지
    • /
    • 제43권4호
    • /
    • pp.280-297
    • /
    • 2017
  • Objectives: We assessed pesticide exposure levels according to cultivation and crop type and investigated agricultural factors related to exposure. Methods: The participants, 341 male and 127 female farmers, were divided into three groups by cultivation crop type: chili greenhouse, cucumber greenhouse, and orchard. We collected questionnaires, socioeconomic characteristics and agricultural factors, and spot urine. Pesticide exposure was examined using four organophosphate and four pyrethroids urinary metabolites: dimethylphosphate, dimethylthiophosphate, diethylphosphate, diethylthiophosphate, Cis and Trans-3-(2-2dichlorovinyl)-2, 2-dimethylcyclopropane carboxylic acid, 3-phenoxybenzoic acid (3-PBA), Cis-3-(2-2dibrmovinyl)-2, and 2-dimethylcyclopropane carboxylic acid. Each metabolite was summed ${\Sigma}DAP$ and ${\Sigma}PY$ according to the chemical class. Results: Urinary metabolite detection rates and concentrations were similar between the greenhouse groups, but the orchard group was different. Similar 3-PBA detection rates were found in the three groups, but the geometric mean was very high in the orchard group compared to the two greenhouse groups. 3-PBA concentration in the orchard group was $4.11{\mu}g/g$ creatinine; the chili and cucumber greenhouse groups were 1.27 and $1.16{\mu}g/g$ creatinine, respectively. ${\Sigma}DAP$ was significantly associated with cultivation crop type and seasonal variation, but ${\Sigma}PY$ was not relevant. Conclusions: Our results suggest that cultivation and crop type may be correlated with different pesticide types and exposure levels. Furthermore, seasonal factors were related as potential factors influencing the level of organophosphate metabolites, but not for pyrethroid metabolites.

Bioremediation을 위하여 재조합 대장균 촉매를 이용한 Paraoxon의 생분해 속도 향상 (Enhancement of Paraoxon Biodegradation Rate from Recombinant Escherichia coli Catalyst for Bioremediation)

  • 최석순;서상환;강동균;차형준;염승호
    • 유기물자원화
    • /
    • 제14권3호
    • /
    • pp.110-116
    • /
    • 2006
  • 본 연구에서는 재조합 대장균으로 부터 Organophosphorus Hydrolase (OPH)를 이용하여 유기인 살충제 화합물인 paraoxon의 생분해 속도를 향상시켰다. OPH의 비 활성도 (Specific whole cell OPH Activity)를 증가시키기 위한 배지의 최적 조건은 초기 pH 8.5의 조절과 5.0 % acetone 첨가가 필요하다는 것을 알 수 있었다. 또한, 이 최적의 조건에서 498 Unit/L의 OPH가 생산될 때, 275 mg/L paraoxon은 반응 10분 동안 98% 생분해 효율을 나타내었고, 그 결과 생분해 속도를 $29.2mg/g{\cdot}min$까지 향상시킬 수 있었다. 이러한 실험 결과들은 지하수 또는 토양에 잔류하는 유기인 살충제를 빠른 시간 안에 효과적으로 생분해시키는 실질적인 생물 복원 기술로 사용될 수 있을 것이다.

  • PDF