• Title/Summary/Keyword: organophosphate

Search Result 153, Processing Time 0.024 seconds

Protective Effect of Combinational Antidotes Composed of Physostigmine and Procyclidine Against Nerve-agent Poisoning

  • Kim, Yun-Bae;Cheon, Ki-Cheol;Hur, Gyeung-Haeng;Phi, Taek-San;Kim, Jee-Cheon;Deasik Hang
    • Toxicological Research
    • /
    • v.16 no.3
    • /
    • pp.195-200
    • /
    • 2000
  • Antidotal efficacy of physostigmine plus procyclidine, the combinational prophylactics for organophosphate poisoning, was evaluated in rats and guinea pigs. To assess the dose-response relation-ship in rats, various doses (0.3-6.0mg/kg) of procyclidine in combination with a fixed dose (0.1mg/kg) of physostigmine were pretreated subcutaneously 30 min prior to subcutaneous exposure to nerve-agents. Physostigmine alone exerted protection ratios of 2.44, 1.20, 1.50, 1.50 and 2.20 folds for tabun, sarin, soman, cyclosarin and V-agent, respectively. Interestingly, coadmnistration of procyclidine with physostigmine exhibited remarkable synergistic effects in a dose-dependent manner, leading to 4.00~8.00 folds for tabun, 2.15-8.50 folds for sarin, 1.92~507 folds for so man, 2.15~2.90 folds for cyclosarin, and 2.71~10.50 folds for V-agent. On the contrary, a low effect (l.65 fold) was achieved with the traditional antidotes atropine (17.4 mg/kg) plus 2-pralidoxime (30 mg/kg) treated immediately after soman poisoning. Noteworthy, the combinational prophylactics markedly potentiated the effect of atropine plus 2-pralidoxime to 6.13 and 12.27 folds with 1.0 and 3.0 mg/kg of procyclidine, respectively, against soman poisoning. In guinea pigs, the physostigmine plus procyclidine prophylactics exerted protective effects of 3.00~4.70 folds against soman intoxcation, which were much higher at low doses (0.3~1.0 mg/kg) of procyclidine than those in rats. Taken together, it is proposed that the combinational prophylactics composed oj physostigmine and procyclidine could be a promising antidote regimen for the poisoning with organophosphates possessing diverse properties.

  • PDF

Determination of pesticides in dead wild birds in Korea (우리나라 폐사 야생조류에서의 농약 분석)

  • Kim, MeeKyung;Yun, Seon Jong;Kim, Dong-Gyu;Bong, Young-Hoon;Kim, Heuijin;Jang, Jung-Hee;Chung, Gab-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.2
    • /
    • pp.131-137
    • /
    • 2008
  • Pesticides are extensively used for the control of crop pests in agriculture and forestry. Organophosphate (OP) and carbamate pesticides are especially effective for the control of a variety of harmful insects. However, these cholinesterase inhibitors are also dangerous to non-target organisms (wildlife and other animals) because of their high acute toxicity. Most poisonings by pesticides occur as a result of misuse or accidental exposure, but intentional killing of unwanted animals also occurs. At the request of a local autonomous entity, we investigated wild bird poisonings by pesticides from 2003 to 2007. The 207 suspicious samples of pesticide poisoning based on the necropsy were analyzed by GC/NPD, GC/FPD, or GC/MSD. We looked for trends in the identification of pesticides in wild birds thought to have died from poisoning. Pesticides were determined in 59% of the total samples analyzed. Phosphamidon and monochrotophos were the most common pesticides identified, which amounted to 77% of the subtotal. Other OP and carbamate pesticides were also found in various concentrations from dead wild birds. The determined rates of pesticides were as high as 86% and 76% in 2003 and 2006, respectively, during an outbreak of avian influenza in Korea.

Pesticide Poisoning Deaths Detected at the National Forensic Service Headquarters in Seoul of Korea: A Five-Year Survey (2005-2009)

  • Lee, Sang-Ki;Rhee, Jong-Sook;Jung, Jin-Mi;Lee, Han-Sun
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.4
    • /
    • pp.263-271
    • /
    • 2010
  • Objectives : The records of 447 pesticide poisoning deaths from the National Forensic Service (NFS) headquarters located in Seoul of Korea from 2005 to 2009 were retrospectively reviewed. Methods : The data of each case were analyzed by using the SPSS program. Results : The mean age was $57.8{\pm}14.8$ years and the range was 16-92 years. The numbers of deaths of males and females were 301 and 134, respectively. The largest number of cases occurred in people aged 50-59 years (n=92, 20.6%) followed by the age groups 40-49 years (n=91, 20.4%), 60-69 years (n=88, 19.7%), and 70-79 years (n=75, 16.8%). The total number of deaths among other age groups (10-19, 20-29, 30-39, 80-89, and 90-99 years) was 73, representing only 16.3%. Of all pesticide poisoning deaths, 96.2% were due to suicide, and 28.4% of the total number who died received medical treatment. The mostfrequent site of ingestion was the person's own residence (n=279, 62.4%). The most common classes of pesticide were bipyridylium herbicide (paraquat, 31.1%), organophosphate insecticide (21.7%), and carbamate insecticide (15.4%). The major pesticides having a high proportion of fatalities were paraquat (31.1%), methomyl (11.4%), glyphosate (9.1%), dichlorvos (5.6%), phosphamidon (4.6%), and methidathion (4.0%). Conclusions : This study showed that poisoning deaths due to pesticides are one of the major public health problems in Korea. Enforcement of regulations and safety education to prevent pesticide poisoning should be carried out by the government.

Acetylcholinesterase Inhibition and Behavioral Changes of Crucian carp (Carassius auratus) Exposed to the Waterborne Parathion (Parathion에 노출된 붕어(Carassius auratus)의 Acetylcholinesterase 억제와 행동변화)

  • Cho, Kyu-Seok;Park, Jong-Ho;Lee, Won-Ho;Kang, Ju-Chan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.364-369
    • /
    • 2006
  • The investigation of the Acetylcholinesterase (AChE) activity in tissues (brain, eye, muscle and serum) of crucian carp (Carassius auratus) exposed to the waterborne parathion was carried out for application as biomarker of organophosphate pesticides. The AChE activities were significantly inhibited in the experimental organs of C. auratus treated ${\geq}63{\mu}g/L$ of concentrations of parathion. The AChE activity of C. auratus was significantly reduced in response to brain (79.1~92.4%), eye (76.0~91.5%), muscle (89.7~97.6%) and serum (68.9~78.0%) after 30 days exposure. No significant mortality occurred during the experiment duration but behavioral changes occurred in the carp after exposure to the parathion were erratic swimming and convulsions. The anomaly in the carp exposed to parathion were observed in the form of scoliosis. The use of AChE activity and other adverse responses of the carp might be use as a reliable monitoring tool to detect parathion in aquatic ecosystem which might produce significant population changes.

Toxicological Aspects of Carboxylesterases -A Sensitive Biomarker of Organophosphate Toxicity-

  • Satoh, Tetsuo;Suzuki, Satoshi;Hosokawa, Masakiyo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.108-113
    • /
    • 1998
  • Egasyn is accessory protein of ${\beta}$-glucuronidase(${\beta}$-G) in the liver microsomes. Liver microsomal ${\beta}$-G is stabilized within the luminal site of the microsomal vesicles by complexation with egasyn which is one of carboxylesterase isozymes. We investigated the effects of organophosphorus compounds(OPs) such as insecticides on the dissociation of egasyn-${\beta}$-glucuronidase(EG) complex. The EG complex was easily dissociated by administration of OPs, i.e., Fenitrothion, EPN, Phenthionate, and bis-p-nitrophenyl phosphate(BNPP), and resulting ${\beta}$-G dissociated was released into blood, leading to the rapid and transient increase of plasma ${\beta}$-G level with a concomitant decrease of liver microsomal ${\beta}$-G level. In a case of phenthionate treatment, less increase in plasma ${\beta}$-G level was observed, as compared with those of other OPs. This may be explained by a fact that phenthionate was easily hydrolyzed by carboxylesterase. Similarly, carbamate insecticides such as Carbaryl caused rapid increase of plasma ${\beta}$-G level. In contrast, no significant increase of plasma ${\beta}$-G level was observed when pyrethroid insecticides were administered to rats. This is due to a fact that pyrethroids such as Phenthrin and Allethrin were easily hydrolyzed by A-esterase as well as carboxylesterase. On the other hand, addition of OPs to the incubation mixture containing liver microsomes caused the release of ${\beta}$-G from microsomes to the medium. From these in vivo and in vitro data, it is concluded that increase of the plasma ${\beta}$-G level after OPs administration is much more sensitive biomarker than cholinesterase inhibition to acute intoxication of OPs and carbamates.

  • PDF

Effect of Addition of Tween 20 and Glycerol in Recombinant Escherichia Coli Culture on Organophosphorus Hydrolase (OPH) Production for Biodrgradation of Coumaphos Insecticide (Coumaphos 살충제의 생분해를 위하여 재조합 대장균 배양에서 Tween 20과 Glycerol 첨가가 유기인분해 효소 생산에 미치는 영향)

  • Choi, Suk Soon;Seo, Sang Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.501-505
    • /
    • 2007
  • Organophosphorus hydrolase (OPH) expressed from recombinant Escherichia coli was used to biodegrade organophosphate insecticide coumaphos which has a very high toxicity in mammalian cells. To improve the productivity of OPH, the effects of nonionic surfactants (Tween 20, PEG 1000) and organic solvents, such as glycerol, propanol, and ethanol, were investigated in the strain culture. The maximum OPH was produced when the 0.25% of Tween 20 and 0.5% of glycerol were added to the medium. As the OPH obtained from disrupt-cell process by ultrasound treatment was used, the biodegradation efficiencies of 0.2, 0.5, 1.0 and 2.0 mM coumaphos were 100, 88, 84 and 78%, respectively. A novel method developed in this study could be applied to the biodetoxification technology in the contaminated region with various coumaphos concentration.

Effects of Malathion on the Ultrastructure and the Acetylcholinesterase Activity of the Developing Spinal Cord in Chick Embryos (Malathion이 발생중(發生中)인 개배(鷄胚) 척수(脊髓)의 미세구조(微細構造)와 acetylcholinesterase 활성(活性)에 미치는 영향(影響))

  • Kim, Wan-Jong;Deung, Young-Kun;Choe, Rim-Soon
    • Applied Microscopy
    • /
    • v.18 no.1
    • /
    • pp.60-76
    • /
    • 1988
  • Chick embryos which have received a single injection of the organophosphate compound, malathion (0.1 mg/0.05 ml, 0.5 mg/0.05 ml, 1.0 mg/0.05 ml or 2.0 mg/0.05 ml) via the yolk sac at certain times (2 days, 4 days or 6 days after incubation) have been investigated. After 9 days of incubation, chick embryos were harvested to examine the effects of malathion on the ultrastructure and the acetylcholinesterase(AChE) activity of the developing spinal cord. The effects of simultaneous injection of malathion and nicotinamide were also compared. On ultrastructural findings, neurons in the ventral horn of spinal cord showed to be inhibited in their differentiation by malathion; nuclear irregularity, separation of nuclear membranes, reduction of ribosomal distribution, and cytoplasmic vacuoles were observed. In the younger embryos treated with relatively high doses of malathion, nucleus and cytoplasmic organelles of neurons were severely destroyed, and the neurons were shown to be necrotic. On cytochemical study of AChE by electron microscope, the positive reaction products of AChE were localized at the membranes of nucleus and endoplasmic reticulum of neurons. Inhibition of AChE activity was severe in groups treated with relatively low doses of malathion. Nicotinamide (5.0 mg/0.05 ml) alleviated malathion-induced morphological alterations. In conclusion, it is suggested that malathion changes the ultrastructure and reduces. AChE activity in differentiating neurons, and the severity of which is consistently dose- and age-dependent.

  • PDF

Hydrolysis of DFP Using Cu(II)-Lactic Acid and Cu(II)-LMWS-Chitosan Chelates (Cu(II)-Lactic Acid와 Cu(II)-LMWS-Chitosan 착물의 DFP 가수분해반응 연구)

  • Kye, Young-Sik;Jeong, Keunhong;Kim, Dongwook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.475-480
    • /
    • 2020
  • Chelates synthesized with Cu(II) ion and lactic acid or chitosan were applied to the hydrolysis of organophosphate simulant, DFP (diisopropyl fluorophosphate). Under the homogeneous reaction condition, Cu(II)-lactic acid chelate hydrolyzed DFP with the half life time of 37.1 min. Cu(II)-LMWS chitosan chelate was synthesized with 1 kDa molecular weight of chitosan, which showed low solubility, and then crystallized. The half life time for hydrolyzing DFP using Cu(II)-LMWS chitosan was 32.9 h indicating that the reaction rate is enhanced as much as 16 times more than that of using 18 kDa chitosan-Cu(II) complex. Under the homogeneous reaction condition, the half life time of Cu(II)-LMWS chitosan was 8.75 h. Therefore, we found out that the solubility of Cu(II)-LMWS chitosan makes the difference in the reaction rate as much as 4 times.

Occupational Neurotoxic Diseases in Taiwan

  • Liu, Chi-Hung;Huang, Chu-Yun;Huang, Chin-Chang
    • Safety and Health at Work
    • /
    • v.3 no.4
    • /
    • pp.257-267
    • /
    • 2012
  • Occupational neurotoxic diseases have become increasingly common in Taiwan due to industrialization. Over the past 40 years, Taiwan has transformed from an agricultural society to an industrial society. The most common neurotoxic diseases also changed from organophosphate poisoning to heavy metal intoxication, and then to organic solvent and semiconductor agent poisoning. The nervous system is particularly vulnerable to toxic agents because of its high metabolic rate. Neurological manifestations may be transient or permanent, and may range from cognitive dysfunction, cerebellar ataxia, Parkinsonism, sensorimotor neuropathy and autonomic dysfunction to neuromuscular junction disorders. This study attempts to provide a review of the major outbreaks of occupational neurotoxins from 1968 to 2012. A total of 16 occupational neurotoxins, including organophosphates, toxic gases, heavy metals, organic solvents, and other toxic chemicals, were reviewed. Peer-reviewed articles related to the electrophysiology, neuroimaging, treatment and long-term follow up of these neurotoxic diseases were also obtained. The heavy metals involved consisted of lead, manganese, organic tin, mercury, arsenic, and thallium. The organic solvents included n-hexane, toluene, mixed solvents and carbon disulfide. Toxic gases such as carbon monoxide, and hydrogen sulfide were also included, along with toxic chemicals including polychlorinated biphenyls, tetramethylammonium hydroxide, organophosphates, and dimethylamine borane. In addition we attempted to correlate these events to the timeline of industrial development in Taiwan. By researching this topic, the hope is that it may help other developing countries to improve industrial hygiene and promote occupational safety and health care during the process of industrialization.

Different Clinical Courses for Poisoning with WHO Hazard Class Ia Organophosphates EPN, Phosphamidon, and Terbufos in Humans (WHO 분류 1 등급 EPN, Phosphamidone, Terbufos 유기인계 중독환자의 임상 양상)

  • Mun, Jong Gu;Moon, Jeong Mi;Lee, Mi Jin;Chun, Byeong Jo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Purpose: Extremely hazardous pesticides are classified as World Health Organization (WHO) hazard class Ia. However, data describing the clinical course of WHO class Ia OP (organophosphate) poisonings in humans are very scarce. Here, we compare the clinical features of patients who ingested hazard class Ia OPs. Methods: This retrospective observational case study included 75 patients with a history of ingesting ethyl p-nitrophenol thio-benzene phosphonate (EPN), phosphamidon, or terbufos. The patients were divided according to the chemical formulation of the ingested OP. Data regarding mortality and the development of complications were collected and compared among groups. Results: There were no differences in the baseline characteristics and severity scores at presentation between the three groups. No fatalities were observed in the terbufos group. The fatality rates in the EPN and phosphamidon groups were 11.8% and 28.6%, respectively. Patients poisoned with EPN developed respiratory failure later than those poisoned with phosphamidon and also tended to require longer mechanical ventilatory support than phosphamidon patients. The main cause of death was pneumonia in the EPN group and hypotensive shock in the phosphamidon group. Death occurred later in the EPN group than in the phosphamidon group. Conclusion: Even though all three drugs are classified as WHO class Ia OPs (extremely hazardous pesticides), their clinical courses and the related causes of death in humans varied. Their treatment protocols and predicted outcomes should therefore also be different based on the chemical formulation of the OP.