• 제목/요약/키워드: organizing

검색결과 2,005건 처리시간 0.034초

THE FUZZY CLUSTERING ALGORITHM AND SELF-ORGANIZING NEURAL NETWORKS TO IDENTIFY POTENTIALLY FAILING BANKS

  • 이기동
    • 한국디지털정책학회:학술대회논문집
    • /
    • 한국디지털정책학회 2005년도 춘계학술대회
    • /
    • pp.485-493
    • /
    • 2005
  • Using 1991 FDIC financial statement data, we develop fuzzy clusters of the data set. We also identify the distinctive characteristics of the fuzzy clustering algorithm and compare the closest hard-partitioning result of the fuzzy clustering algorithm with the outcomes of two self-organizing neural networks. When nine clusters are used, our analysis shows that the fuzzy clustering method distinctly groups failed and extreme performance banks from control (healthy) banks. The experimental results also show that the fuzzy clustering method and the self-organizing neural networks are promising tools in identifying potentially failing banks.

  • PDF

자기 조직 신경망을 이용한 기능적 뇌영상 시계열의 군집화 (Clustering fMRI Time Series using Self-Organizing Map)

  • 임종윤;장병탁;이경민
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.251-254
    • /
    • 2001
  • 본 논문에서는 Self Organizing Map을 이용하여 fMRI data를 분석해 보았다. fMRl (functional Magnetic Resonance Imaging)는 인간의 뇌에 대한 비 침투적 연구 방법 중 최근에 각광받고 있는 것이다. Motor task를 수행하고 있는 피험자로부터 image data를 얻어내어 SOM을 적용하여 clustering한 결과 motor cortex 영역이 뚜렷하게 clustering 되었음을 알 수 있었다.

  • PDF

Intelligent Agent System by Self Organizing Neural Network

  • Cho, Young-Im
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1468-1473
    • /
    • 2005
  • In this paper, I proposed the INTelligent Agent System by Kohonen's Self Organizing Neural Network (INTAS). INTAS creates each user's profile from the information. Based on it, learning community grouping suitable to each individual is automatically executed by using unsupervised learning algorithm. In INTAS, grouping and learning are automatically performed on real time by multiagents, regardless of the number of learners. A new framework has been proposed to generate multiagents, and it is a feature that efficient multiagents can be executed by proposing a new negotiation mode between multiagents..

  • PDF

Application of self organizing genetic algorithm

  • Jeong, Il-Kwon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.18-21
    • /
    • 1995
  • In this paper we describe a new method for multimodal function optimization using genetic algorithms(GAs). We propose adaptation rules for GA parameters such as population size, crossover probability and mutation probability. In the self organizing genetic algorithm(SOGA), SOGA parameters change according to the adaptation rules. Thus, we do not have to set the parameters manually. We discuss about SOGA and those of other approaches for adapting operator probabilities in GAs. The validity of the proposed algorithm will be verified in a simulation example of system identification.

  • PDF

Self-Organizing Map을 이용한 한국어 동사 클러스터링 (Korean Verb Clustering Using Self-Organizing Maps)

  • 박성배;장병탁;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.183-184
    • /
    • 1998
  • 본 논문에서는 목적어-동사 관계의 분포에 따라 한국어 동사를 자동적으로 클러스터링하는 방법을 제시한다. SOM(Self-Organizing Map)이 입력 패턴을 분석하고 가시화하는데 뛰어난 성능을 보이므로, 본 논문에서는 클러스터링하는 방법으로 SOM을 채택하였다. 일단 맵(map)이 만들어지고 나면 학습하는 동안 경험하지 못한 동사도 쉽게 적당한 클러스터로 분류될 수 있고 클러스터들 간의 의미 거리도 맵을 이용하여 쉽게 계산할 수 있다. 본 논문에서 제안한 방법을 명사 확률 분포의 상대 엔트로피(relative entropy)에 기반한 클러스터링 방법과 비교해 본 결과, SOM에 의해 만들어진 동사 클러스터가 상대 엔트로피를 이용해서 만들어진 클러스터를 잘 반영한다는 것을 알 수 있었다.

  • PDF

수정된 자기 구조화 특징 지도를 이용한 한국어 음소 인식 (Korean Phoneme Recognition using Modified Self Organizing Feature Map)

  • 최두일;이수진;박상희
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1991년도 추계학술대회
    • /
    • pp.38-43
    • /
    • 1991
  • In order to cluster the Input pattern neatly, some neural network modified from Kohonen's self organizing feature map is introduced and Korean phoneme recognition experiments are performed using the modified self organizing feature map(MSOFM) and the auditory model.

  • PDF

DYNAMICALLY LOCALIZED SELF-ORGANIZING MAP MODEL FOR SPEECH RECOGNITION

  • KyungMin NA
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.1052-1057
    • /
    • 1994
  • Dynamically localized self-organizing map model (DLSMM) is a new speech recognition model based on the well-known self-organizing map algorithm and dynamic programming technique. The DLSMM can efficiently normalize the temporal and spatial characteristics of speech signal at the same time. Especially, the proposed can use contextual information of speech. As experimental results on ten Korean digits recognition task, the DLSMM with contextual information has shown higher recognition rate than predictive neural network models.

  • PDF

Competitive Benchmarking in Large Data Bases Using Self-Organizing Maps

  • 이영찬
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.303-311
    • /
    • 1999
  • The amount of financial information in today's sophisticated large data bases is huge and makes comparisons between company performance difficult or at least very time consuming. The purpose of this paper is to investigate whether neural networks in the form of self-organizing maps can be used to manage the complexity in large data bases. This paper structures and analyzes accounting numbers in a large data base over several time periods. By using self-organizing maps, we overcome the problems associated with finding the appropriate underlying distribution and the functional form of the underlying data in the structuring task that is often encountered, for example, when using cluster analysis. The method chosen also offers a way of visualizing the results. The data base in this study consists of annual reports of more than 80 Korean companies with data from the year 1998.

  • PDF

이동로봇의 전역 경로계획에서 Self-organizing Feature Map의 이용 (The Using of Self-organizing Feature Map for Global Path Planning of Mobile Robot)

  • 차영엽;강현규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.817-822
    • /
    • 2004
  • This paper provides a global path planning method using self-organizing feature map which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

  • PDF

자기조직화 지도를 이용한 반도체 패키지 내부결함의 패턴분류 알고리즘 개발 (The Development of Pattern Classification for Inner Defects in Semiconductor Packages by Self-Organizing Map)

  • 김재열;윤성운;김훈조;김창현;양동조;송경석
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.65-70
    • /
    • 2003
  • In this study, researchers developed the estimative algorithm for artificial defect in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages : Crack, Delamination and Normal. According to the results, we were confirmed that estimative algerian was provided the recognition rates of 75.7% (for Crack) and 83.4% (for Delamination) and 87.2 % (for Normal).