95 KACC (1995. 10. 23 ~ 25)

Application of Self Organizing Genetic Algorithm

II-Kwon Jeong and Ju-Jang Lee

Department of Electrical Engineering
Korea Advanced Institute of Science and Technology
373 - 1 Kusong-dong, Yusong-gu, Taejon 305 — 701, Korea -
FAX: +82-42-869-3410 E-mail: jik@odyssey.kaist.ac.kr

Abstract In this paper we describe a new method for multimodal function optimization using genetic algo-
rithms(GAs). We propose adaptation rules for GA parameters such as population size, crossover probability and
mutation probability. In the self organizing genetic algorithm(SOGA), SOGA parameters change according to
the adaptation rules. Thus, we do not have to set the parameters manually. We discuss about SOGA and those
of other approaches for adapting operator probabilities in GAs. The validity of the proposed algorithm will be

verified in a simulation example of system identification.

Keywords Genetic algorithm, System identification, Self organizing

1. Introduction

Genetic algorithms(GAs) are robust search and op-
timization techniques which are based on the natural
selection and genetics. GAs are applied in a number of
practical problems nowadays. GAs are different from
conventional optimization methods in several ways. GA
is a parallel and global search method which searches
multiple points so it is more likely to get the global op-
timum. It makes no assumption on the search space so,
it can be easily applied to various problems. In control
area, it has been applied to identification [1], adapta-
tion [2] and neural network controller [3][6]{7]. However
GAs are inherently slow and not good at fine tuning of
the solutions.

The GA may be thought as an evolutionary pro-
cess where a population of solutions evolves over a se-
quence of generations. During each generation, the fit-
ness(goodness) of each solution is calculated, and so-
lutions are selected for reproduction based on their fit-
ness. The probability of survival of a solution is propor-
tional to its fitness value. This process is based on the
principle of 'Survival of the fittest’. The reproducted
solutions then undergo recombination which consists of
crossover and mutation. We should note that genetic
representation may differ from the real form of the pa-
rameters of the solutions. Fixed-length and binary en-
coded strings have been widely used for representing
solutions since they provide the maximum number of
schemata and as they are simple to implement [4]5].

In this paper we describe a self organizing genetic al-
gorithm (SOGA) for multimodal function optimization.
The choice of the crossover probability, p, and the mu-
tation probability, p,, is known to critically affect the
behavior and performance of the GA. Though a num-
ber of generalized guidelines exist in the literature for

18

choosing p. and p,,, these guidelines are inadequate as
the choice of optimal p. and p,, becomes specific to the
problem under consideration. The size of a population
is another important parameter that affects the perfor-
mance of the algorithm. In our algorithm, p., p,, and
the size of the population are determined adaptively by
the GA itself to realize the twin goals of maintaining
diversity in the population and sustaining the conver-
gence capacity of the GA.

The paper is organized as follows. In section 2, gen-
eral feature of a simple genetic algorithm is briefly de-
scribed. Section 3 describes our algorithm, SOGA. In
section 4, we present simulation results to compare the
performance of SOGA with that of a simple GA. The

conclusions are presented in section 5.

2. A Simple Genetic Algorithm

GA is a search method based on the natural selection
and genetics. GA 1s computationally simple yet power-
ful and it is not limited by assumptions about the search
space. The most important goal of optimization should
be improvement. Although GA cannot guarantee that
the solution will converge to the optimum, it tries to
find the optimum, that is, it works for the improve-
ment. GA’s are diffrent from normal search procedures
in four ways.

1. GAs work with a coding of the parameter set, not
the parameters themselves.

2. GAs search from a population of points, not a single
point.

3. GAs use objective function information, not deriva-
tives or other auxiliary knowledge.

4. GAs use probabilistic transition rules, not determin-
istic rules.

Following the model of evolution, GA establish a
population of individuals, where each individual cor-

responds to a point in the search space. An objec-
tive function is applied to each individual to evaluate
their fitness. Using genetic operators, a next genera-
tion is formed based upon the survival of the fittest.
Therefore, the evolution of individuals from generation
to generation tends to result in fitter individuals, solu-
tions, in the search space. Empirical studies have shown
that genetic algorithms do converge on global optima
for many problems including NP-hard ones.

In a simple GA, following three basic genetic opera-
tors are used.
Reproductton : Reproduction probability is propor-
tional to the fitness value(objective function value) of a
string(individual).

Crossover : Crossover needs mating of two individuals.
The informations of two randomly selected individuals
is partly interchanged according to the crossover site.
Crossover is applied to take valuable information from
both parents, and it is applied with the crossover prob-
ability.

Mutation : This operator insures against a bit loss and
Since mutation is a ran-
dom walk through the string space, it must be used
sparingly.

can be a source of new bits.

There are three differences of GA from random
search. First, the existence of the direction of search
due to the selection probability. Second, the fact that
the better strings make more offsprings and finally, be-
ing likely to be improved in average fitness over gener-
ations.

3. Self Organizing Genetic Algorithm

In optimizing unimodal functions, it is important
that the GA should be able to converge to the opti-
mum in as few generations as possible. For multimidal
functions, there is a need to be able to locate the region
in which the global optimum exists, and then converge
to the optimum. GAs possess poor hill-climbing capa-
bilities and, they are vulnerable to getting stuck at a lo-
cal optimum especially when the populations are small.
The significance of p. and p,, in controlling GA per-
formance has long been acknowledged in GA research.
The higher the value of p., the quicker are the new so-
lutions introduced into the population. As p. increases,
however, solutions can be disrupted faster than selec-
tion can exploit them. Large value of p,, transform
the GA into a purely random search, while some muta-
tion is required to prevent the premature convergence
of the GA to suboptimal solutions. The population size
also affects the GA performance. Premature covergence
may occur when the population size is small, while a
large population size makes the algorithm slow. Usu-
ally, the choice of p., p,, and population size is left to
the user to be determined statically prior to the execu-

19

tion of the GA.

To overcome the above-stated problem of difficulty in
choosing the GA parameters, we suggest the following
expressions which are main components of SOGA.

Pe = kl(frna:r. - f')/(fmaz - fmin) + k2

(1)

ki +ky <1

Pm = kS(fmaa: - f)/(fmaa: - fmin) + k4 (2)

ks + kg <1

where fnq, is the maximum fitness value and f,,;, is
the minimum fitness value. f' is the larger of the fit-
ness values of the solutions to be crossed. k3 and the
population size, N,,, are changed adaptively using the
following procedure.

1. Initialize ks.

2. 1@ «— 1+ 1, generation z.

3. If the fittest is the same for n,.,.; generations, then
Npop + Npop + 11 and go to step 1.

4. Nyop +— Npop — 12, ks «— ¢ * k3, go to step 2.

where n; and n, are positive constants of integers, and
¢ < 1. As we can see from (1), p. is a linear function of
f' which varies from k; + k3 to kz as f' changes from
fmin tO frnaz. Dm varies in a similar fashion. Thus, the
higher the fitness of a solution, the lower the probability
of crossover or mutation of the solution. Therefore, we
are able to preserve 'good’ solutions of the population
while the low fitness solutions prevent the GA from get-
ting stuck at a local optimum. Note that k3 is designed
to decrease exponentially over generations. After few
generations k3 vanishes to O from its initial value and
the mutation operator becomes to behave like a nor-
mal one. But, when the fittest is the same for n,,e:
generations, that is, the GA is getting stuck at a local
optimum, p,, is enlarged to its initial value to move the
search to the global optimum and, the population size
N,op 1s increased to search wider region of the search
space. When the algorithm is in its normal operation
state, Np,, is decreased at every generations to speed
up the algorithm.

There have been similar works to improve the GA.
[6] incorporates simulated annealing technique into the
GA. [7] uses a fitness modification technique and an
adaptive mutation probability. A local improvement
operator is introduced in [8]. [9] proposes adaptive
probabilities of crossover and mutation. However, its
adaptive rules are not as general as ours and, the adap-
tation of the population size is not considered.

4. Simulation

The problem considered here is the same as those in
[1]{6]. It is presented for comparison purpose. The
object system is a discrete time system:

A(g™Y)y(t) = B(g™")u(t — d) (3)
is the backward shift operator and the ob-
jective is identifing A(g~!), B{¢~!) and delay d using

the given input u(t) and the output y(t). We define the
eITor sequence as

where ¢~}

n(t) = y(t) — §(t) (4)
with

A(g™1)9(t) = B(g™!)u(t - d)
The fitness function to be maximized is

F() =1/} (n(t - 1))

+=0

(5)

(6)

where w represents window size. The system polyno-
mials, poles and zeros in the reparameterized plane [1]
are the following:

A(g7') = 1.0-15¢7140.7¢72 (7)
B(g™!) = bo(1.0+0.5¢7! +0.0¢72) (8)
[p1,p2) = [0.75,—0.37], [21, 22) = [0.25,0.25] (9)

where bg is 1 and the delay d was set to 1. We apply a
simple GA and SOGA to identify p,, ps, 23, 22, by and
d. bo is assumed to be in [0, 2] and the poles and zeros
in [—1, 1]. We use binary encoding. 7 bits were used for
each parameter except for d (2 bits), so the resolution is
slightly smaller than 0.02. A string consists of 37 bits.
We used p. = 0.8, p, = 0.01, N,,,, = 100 and w = 30
for the simple GA. We used k; k2 = 0.5, initial
ks = 0.9, ky = 0.01, initial N,o, = 50, nreper = 5,
n; =6, ng = 2, ¢c = 0.9 and w = 30 for SOGA. Input
for the sample data is

u(t) = sin(t) — sin(t/2.5) + random(—1 ~ 1) (10)

We show the input and output used for the sample in
Fig. 1. One simulation was done using 200 samples
with 3 generations per one sample, that is, 600 gener-
ations. 10 simulations were done for each algorithm.
Fig. 2 ~ 4 show the average of the identification re-
sults of the poles with simple GA. The true value of p;
is —0.371. But, the limitation on the resolution due to
binary coding makes p; equal to —0.375. Fig. 5 ~ 7
show the average of the results with SOGA. It shows
the better hill-climbing and optimum finding capabil-
ity than simple GA. The average of the population sizes
of 10 simulations was found to be 43.4, which is much
smaller than that of the simple GA though the perfor-
mance of SOGA is much better than that of the simple
GA.

20

5. Conclusion

We have proposed a self organizing genetic algo-
rithm(SOGA) which was designed to prevent the pre-
mature convergence and to sustain the convergence ca-
pacity of the GA. SOGA determines p;, pn and Ny,p
automatically using its adaptive rule so, we do not
have to determine the values for the parameter prior to
the execution of GA. Simulation results indicate that
SOGA has adaptive characteristics and improved hill-
climbing capability compared to the simple GA. Using
adaptive population size, execution time of the algo-
rithm is significantly lowered. Furthur work includes
the theoretical analysis of SOGA.

References

[1] K. Kristinsson and G. A. Dumont, ”System iden-
tification and control using genetic algorithms,”
IEEE Trans. Syst., Man, Cybern., vol. 22, no. 5,
pp. 1033-1046, Sep., 1992.

[2] C. L. Karr and E. J. Gentry, "Fuzzy control of
pH using genetic algorithms,” IEEE Trans. Fuzzy

Syst., vol. 1, no. 1, pp. 46-53, Feb., 1993.

[3] Y.Ichikawa and T. Sawa, ” Neural network applica-
tion for direct feedback controllers,” IEEE Trans.
Neural Networks, vol. 3, no. 2, pp. 224-231, Mar.,

1992.

{4] D. E. Goldberg, Genetic Algorithms in Search, Op-
timization, and Machine Learning. Reading, MA:

Addison-Wesley, 1989.

(5] L. Davis, Handbook of Genetic Algorithms. Read-

ing, MA: Van Nostrand Reinhold, 1991.
(6]

I. K. Jeong and J. J. Lee, ”Genetic algorithms
and neural networks for identification and con-
trol,” Proceedings of the First Asian Control Con-

ference, pp. 697-700, 1994.

[7] I. K. Jeong and J. J. Lee, ” A modified genetic al-
gorithm for neurocontrollers,” IEEE International
Conference on Evolutionary Computing, to ap-

pear, 1995.

J. A. Miller, W. D. Potter, R. V. gandham and C.
N. Lapena, ” An evaluation of local improvement
operators for genetic algorithms,” IEEE Trans.
Syst., Man, Cybern., vol. 23, no. 5, pp. 1340-1351,
Sep., 1993.

[9] M. Srinivas and L. M. Patnaik, ” Adaptive prob-
abilities of crossover and mutation in genetic al-
gorithms,” IEEE Trans. Syst., Man, Cybern., vol.

24, no. 4, pp. 656-667, April, 1994.

Sample input and outpul

-20
2~SO o 50

100 150 200

Fig. 1. The sample input and output

08

0.75

06}

04}

02

Averaged estimated values

Genention

Fig. 2. Identification of the poles using a simple GA

o4

Averaged estimated values

08 .

300 400 500 600

Generation

Fig. 3. Identification of the zeros using a simple GA

Averaged extimated values

Fig. 4. Identification of by and d using a simple GA 21

300 400

Generation

078
ol

06 —K 1
-
3 o4
]
B
=
k]
H
£ oz}]
H
H
=
2
-
g
g of ~
<

,o_z.% 4

3a0 400 500 600

Generation

Fig. 5. Identification of the poles using SOGA

03
o02f 025 4
o1 1
off J

i 2
0.1} o]

Averaged estimated values

100 200 300 400 500 600

Genesation

Fig. 6. Identification of the zeros using SOGA

Averaged estimated values

08 — S .
100 200 300 400 500 600
Generation

Fig. 7. Identification of b9 and d using SOGA

