• Title/Summary/Keyword: organic matter decomposition

Search Result 194, Processing Time 0.025 seconds

Characteristics of distribution and decomposition of organic matters in stream water and sewage effluent (하천수와 하수처리장 방류수의 유기물 분포 및 분해 특성)

  • Seo, Hee-Jeong;Kang, Yeoung-Ju;Min, Kyoung-Woo;Lee, Kyoung-Seog;Seo, Gwang-Yeob;Kim, Seung-Ho;Paik, Kye-Jin;Kim, Seong-Jun
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • This study was performed to investigate the distribution and decomposition characteristics of organic matter in stream water and sewage effluent located in Gwangju. Average of dissolved organic carbon (DOC) to total organic carbon (TOC) ratio was approximately 73.9% in the Youngsan river system. The concentration of refractory dossolved carbon (RDOC) was 3.7 mg/L corresponding to 80.9% of the DOC. The ratio of recalcitrant organic carbon was relatively higher than that of biodegradable organic carbon in stream. Oxidation efficiencies in the stream were 45.0% for BOD, 63.0% for $COD_{Mn}$ and 106.5% for CODcr. In case of sewage effluent was 33.6%, 65.7% and 136.1% respectively. Mean decomposition rate ($K_d$) of Youngsan river mainstream, its tributary sites and sewage effluent were about $0.042\;day^{-1}$, $0.043\;day^{-1}$ and $0.028\;day^{-1}$, respectively and the difference was not significant between the mainstream and its tributary sites (t-test, p>0.05). $K_d$ of the sewage effluent was lower than that of stream water.

FORMATION OF KETOACIDS AND AOC DURING OZONATION IN DRINKING WATER

  • Lee, Kyung-Hyuk
    • Environmental Engineering Research
    • /
    • v.11 no.6
    • /
    • pp.293-302
    • /
    • 2006
  • The reaction of ozone with NOM (Natural Organic Matter) can occur by two different pathways: that involving molecular ozone and by way of reactions with hydroxyl radicals which are produced from the decomposition of molecular ozone. As such, the formation of ketoacids and Assimilable Organic Carbon (AOC) can be controlled by controlling the pathway by which ozone reacts with NOM. The ratios of $[OH{\cdot}]/[O_3]$ ($R_{CT}$ values) were determined under the various ozonation conditions. The $R_{CT}$ values increased with increasing initial ozone concentration. The $R_{CT}$ values (ranges from 10 to $35^{\circ}C$) increased linearly as temperature increased (within the range from 10 to $35^{\circ}C$). However, $R_{CT}$ was independent of hydraulic retention time (HRT). Operational conditions were found to affect the formation of AOC. The conditions where the molecular ozone reaction predominated resulted in an increase in the formation of AOC.

A change of soil properties and forest vegetation present in burned areas in Geyjoksan, Daejeon metropolitan city (대전광역시 계족산 산화지의 토양 변화와 식생 현황)

  • Lee, Hang-Goo;Park, Gwan-Soo;Lee, Sang-Jin;Kim, Kil-Nam;Park, Beom-Hwan;Ko, Young-Woong;Yoon, Jun-Young;Kim, Hyoun-Sook;Lee, Sang-Hyuk;Kang, Kil-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • This study was conducted to investigate changes on burned areas after a forest fire in Geyjoksan which occurred in April 2000. Both soil physicochemical properties and vegetation present were analyzed in burned and unburned sites of pinus densiflora according to two slope aspects(south and north-facing slopes). The results of the analysis are as follows. The appearance species of vegetation were 21, 15 and 18 for burned site, burned site-1 and burned site-2 of pinus densiflora community respectively, indicating that the occurrence of forest fire and slope aspects affect vegetation appearance. The pH values at 0~10cm soil depth of unburned and burned sites of pinus densiflora community were 5.04 and 5.12 respectively with no significant difference between them. Mean organic matter, total nitrogen and available P also had no significant difference. This results indicate that the forest recover its former pH, total nitrogen, mean organic matter and available P over time after a forest fire. North-facing slope had relatively higher soil water content thus implying that its pH values of soil lower than south-facing slope. On the other hand, south-facing slope had high organic matter and available P content of soil as compared to north-facing slope. With south facing slope having high water contents, humus was accumulated due to slow organic matter decomposition. The pH values also decreased due to organic acids from humus. However, we observed that organic matter and P concentration in soil increased.

Effects of Canopy Removal on Cellulose Decomposition and Nitrogen Mineralization in Quercus rubra Stands (임관 제거가 루브라참나무림의 셀룰로오스 분해와 질소 무기화에 미치는 영향)

  • Kim, Choonsig
    • The Korean Journal of Ecology
    • /
    • v.18 no.2
    • /
    • pp.219-230
    • /
    • 1995
  • Although many studies of nutrient cycling in forest ecosystems have reported that clearcutting creates increased organic matter decomposition and nitrogen (N) mineralization in soils, little is known about the change of these factors following various levels of canopy removal. A series of experimental plots with four levels of canopy cover, i.e., clearcut, 25%, 75%, and uncut, was established in northern red oak (Quercus rubra L.) stands in northern Lover Michigan, U.S.A. I examined decomposition of cellulose filter papers and N mineralization using an in situ soil incubation technique in the top 15cm of mineral soil during the second growing season (1992, May-October) following stand manipulation. Mass loss from cellulose filter papers was more rapid in the canopy removal treatments than in the uncut treatment. similarly, net N mineralization was significantly greater in the canopy removal treatments than in the uncut treatment. There was no significant difference in net N mineralization rates among the three levels of canopy removal. Net N mineralization for the growing season was 58 kg/ha for the clearcut, 54 kg/ha for the 25% canopy cover, 51 kg/ha for the 75% canopy cover, and 22 kg/ha for the uncut treatment. These results indicated that even only small amounts of canopy removal (leaving 75% canopy cover) let to substantial increases of cellulose decomposition and the amount of available soil nitrogen.

  • PDF

A Study on the Production and Decomposition of Litters of Evergreen Broadleaved Forests in Haenam and Koje-Do (해남과 거제도의 상록활엽수림에 있어서 낙엽의 생산과 분해에 관한 연구)

  • Chang, Nam-Kee
    • The Korean Journal of Ecology
    • /
    • v.8 no.3
    • /
    • pp.163-169
    • /
    • 1985
  • The composition rates of litters were studied at Camellia japonica forests in Koje-Do and Haenam, and at Quercus acuta, Quercus acutissima, Cryptomeria japonica, and Chamaecyparis abtusa forests in Haenam. Total amounts of nitrogen, phosphorus, potassium, calcium, and sodium in litter samples were measured and the relation between these amounts and decomposition rate was studied. Annual litter production were rarely different at each forest in Haenam. The amount of accumulated organic matter was about 4 times greater at C. japonica forest in Koje-Do than at the C. japonica forest in Haenam. These amounts were 5, 282.1 $\pm$ 1, 026.03g/m2 in Koje-Do and 1, 420.7 $\pm$ 384.77g/$m^2$ in haenam. The decomposition rate were rarely differnet at each forest in Haenam, but the rates showed great difference at C. japonica foreests in Koje-Do and Haenam. The rates were 0.093 and 0.313 at C. japonica forests in Koje-Do and in Haenam respectively. The sodium contents were 0.472% and 0.229% on L layer and on Css layer of C. japonica forest in Koje-Do, while they were 0.034% and 0.043% on L layer, and on Css layer of C. jpaonica forest in Haenam. It is sugested that much difference in the salt contents in the forest floor was present from the results of sodium content measured at each site, and that the decomposition rate was affected by the much concentration of salt in Koje-Do.

  • PDF

Fertilization and Tree Density Effects on Cellulose Decomposition in a Larix leptolepis Plantation

  • Kim, Choonsig;Kim, Oue-Ryong;Ahn, Hyun-Chul;Cho, Hyun-Seo;Choo, Gab-Chul;Park, Jae-Hyeon
    • The Korean Journal of Ecology
    • /
    • v.25 no.6
    • /
    • pp.399-403
    • /
    • 2002
  • Cellulose mass loss by cellulose filter papers was measured for 3 time (35 days, 70 days, 105 days) incubation during the growing season (from May to September 2002) with different tree density and after fertilization in a Japanese larch (Larix leptolepis) plantation. Cellulose mass loss rates were significantly different between tree density types and fertilization treatments during the study periods. After 105 day incubation of cellulose filter paper, cellulose mass loss rates were significantly higher in the low tree density (70.1 $\%$) than in the high tree density (49.9$\%$). Cellulose mass loss rates averaged 62.8$\%$ in the fertilization and 58.9% in the unfertilization treatments during the same periods. However, cellulose mass loss was not significantly different between the forest floor and the mineral soil layer except for 35 day incubation. The results indicate that cellulose decomposition rates are a useful index to express differences in organic matter decomposition activity in different tree density and after fertilizer treatments.

Influence of Mucor mucedo immobilized to corncob in remediation of pyrene contaminated agricultural soil

  • Hou, Wei;Zhang, Le;Li, Xiaojun;Gong, Zongqiang;Yang, Yongwei;Li, Zhi
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.149-154
    • /
    • 2015
  • In recent years, immobilization agents were introduced into organic contaminated soil remediation and more and more materials were screened and used as the immobilizing carrier. However, effect of the decomposition of the immobilizing carrier on the bioremediation was rarely concerned. Therefore, the decomposition experiment of immobilizing carrier -corncob was carried out in the lab with the efficient degradation fungi - Mucor mucedo (MU) existing, and polycyclic aromatic hydrocarbons (PAHs) residues E4/E6 of the dissolved organic matter and microbial diversity during the decomposition process were studied. The results showed that: a) during the decomposition, the degradation of pyrene (Pyr) was mainly in the first 28 d in which the content of extractable Pyr decreased rapidly and the highest decrease was in the treatment with only MU added. b) Anslysis of E4/E6 changes showed that rich microorganisms could promote aromatization and condensation of humus. c) From the diversity index analysis it can also be seen that there is no significant difference in effects of PAHs on the uniformity of microorganisms. These results will not only be useful to have a better understanding of the bioavailability of contaminants adsorbed to biodegradable carriers in PAHs contaminated soil remediation, but also be helpful to perfect the principle of immobilized microbial technique.

Relationship between Concentration of Phosphorus, Turbidity, and pH in Water and Soil under Aerobic and Anaerobic Conditions (혐기와 호기 상태의 물과 토양에서 pH, PO4-P, 탁도, T-P 농도 관계)

  • Min, Young-Hong;Kang, Sam-Woo;Lee, Hoi-Seon;Chung, Nam-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.225-229
    • /
    • 2011
  • This research was carried out to elucidate the impacts of dissolved oxygen (DO) concentration to phosphorus release mechanism from soil into water in lakes. $PO_4-P$ contributed to the growth of the total phosphorus (T-P). $PO_4-P$ was steadily increasing because water was accumulating $PO_4-P$. T-P was closely related to turbidity, pH, and DO. We found that DO had decreased because DO was consumed in organic matter decomposition, and that the resulting anaerobic decomposition occurred whenever water had run out of DO. We also found that pH had decreased sharply by production of organic acid by the anaerobic decomposition and that T-P decreased because a decrease in pH removed turbidity by precipitation. T-P was dissolved without microbial decomposition. This mechanism was of great importance in lakes because phosphorus is released from soil into water.

Geostatistical Analysis of Soil Enzyme Activities in Mud Flat of Korea

  • Jung, Soohyun;Lee, Seunghoon;Park, Joonhong;Seo, Juyoung;Kang, Hojeong
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.2
    • /
    • pp.93-96
    • /
    • 2017
  • Spatial variations of physicochemical and microbiological variables were examined to understand spatial heterogeneity of those variables in intertidal flat. Variograms were constructed for understanding spatial autocorrelations of variables by a geostatistical analysis and spatial correlations between two variables were evaluated by applications of a Cross-Mantel test with a Monte Carlo procedure (with 999 permutations). Water content, organic matter content, pH, nitrate, sulfate, chloride, dissolved organic carbon (DOC), four extracellular enzyme activities (${\beta}-glucosidase$, N-acetyl-glucosaminidase, phosphatase, arylsulfatase), and bacterial diversity in soil were measured along a transect perpendicular to shore line. Most variables showed strong spatial autocorrelation or no spatial structure except for DOC. It was suggested that complex interactions between physicochemical and microbiological properties in sediment might controls DOC. Intertidal flat sediment appeared to be spatially heterogeneous. Bacterial diversity was found to be spatially correlated with enzyme activities. Chloride and sulfate were spatially correlated with microbial properties indicating that salinity in coastal environment would influence spatial distributions of decomposition capacities mediated by microorganisms. Overall, it was suggested that considerations on the spatial distributions of physicochemical and microbiological properties in intertidal flat sediment should be included when sampling scheme is designed for decomposition processes in intertidal flat sediment.

Using Eeclaimed Land for Potato Cultivation in Saemangeum, South Korea: Determining the Optimal Nitrogen Fertilization Rate with the Giant Miscanthus used as a Source of Soil Organic Matter (새만금간척지에서 거대억새 투입 후 분해 특성 및 감자 재배를 위한 적정 질소시비수준 평가)

  • Yang-Yeol, Oh;Kang-Ho, Jeong;Su-Hwan, Lee;Kwang-Seung, Lee;Bo-Seong, Seo;Kil-Yong, Kim
    • Journal of Environmental Science International
    • /
    • v.31 no.11
    • /
    • pp.911-922
    • /
    • 2022
  • To restore reclaimed land, it needs to be supplemented with organic matter; this is especially true for Korea, where organic matter constitutes only one-tenth of conventional agricultural soils. The giant Miscanthus, a perennial grass known for its extensive biomass, shows signs of being an excellent source of organic matter for restoring reclaimed land. Therefore, the objectives of this study were to (i) evaluate the feasibility of using the giant miscanthus as an organic resource within the context of re-using reclaimed land for agricultural purposes (i.e., potato cultivation), and (ii) determine the optimum fertilization rate for the potatoes while the giant miscanthus is being used as an organic resource. Our results show that after 180 days, giant miscanthus lost 23-47% of its original dry weight, with the extent of the loss dependent on soil salinity. Nutrient concentrations (Mg2+, Na+) continued to increase until the end of the study period. In contrast, potassium (K+) and the ratio of carbon to nitrogen (C/N) decreased until the end of the study period. Specifically, after 180 days, low salinity topsoil treatments had the lowest C/N ratio. In the first year, 150 % of standard N rates were required for the potatoes to achieve maximum productivity; however in the 2nd year, standard rates were sufficient to achieve maximum productivity. Overall, this implies that even though the application of giant miscanthus did eventually improve soil quality, increasing crop yields, N fertilization is still necessary for the best outcomes.