DOI QR코드

DOI QR Code

Using Eeclaimed Land for Potato Cultivation in Saemangeum, South Korea: Determining the Optimal Nitrogen Fertilization Rate with the Giant Miscanthus used as a Source of Soil Organic Matter

새만금간척지에서 거대억새 투입 후 분해 특성 및 감자 재배를 위한 적정 질소시비수준 평가

  • Yang-Yeol, Oh (Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration) ;
  • Kang-Ho, Jeong (Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration) ;
  • Su-Hwan, Lee (Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration) ;
  • Kwang-Seung, Lee (Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration) ;
  • Bo-Seong, Seo (Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration) ;
  • Kil-Yong, Kim (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • 오양열 (농촌진흥청 국립식량과학원) ;
  • 정강호 (농촌진흥청 국립식량과학원) ;
  • 이수환 (농촌진흥청 국립식량과학원) ;
  • 이광승 (농촌진흥청 국립식량과학원) ;
  • 서보성 (농촌진흥청 국립식량과학원) ;
  • 김길용 (전남대학교 농화학과)
  • Received : 2022.08.14
  • Accepted : 2022.11.07
  • Published : 2022.11.30

Abstract

To restore reclaimed land, it needs to be supplemented with organic matter; this is especially true for Korea, where organic matter constitutes only one-tenth of conventional agricultural soils. The giant Miscanthus, a perennial grass known for its extensive biomass, shows signs of being an excellent source of organic matter for restoring reclaimed land. Therefore, the objectives of this study were to (i) evaluate the feasibility of using the giant miscanthus as an organic resource within the context of re-using reclaimed land for agricultural purposes (i.e., potato cultivation), and (ii) determine the optimum fertilization rate for the potatoes while the giant miscanthus is being used as an organic resource. Our results show that after 180 days, giant miscanthus lost 23-47% of its original dry weight, with the extent of the loss dependent on soil salinity. Nutrient concentrations (Mg2+, Na+) continued to increase until the end of the study period. In contrast, potassium (K+) and the ratio of carbon to nitrogen (C/N) decreased until the end of the study period. Specifically, after 180 days, low salinity topsoil treatments had the lowest C/N ratio. In the first year, 150 % of standard N rates were required for the potatoes to achieve maximum productivity; however in the 2nd year, standard rates were sufficient to achieve maximum productivity. Overall, this implies that even though the application of giant miscanthus did eventually improve soil quality, increasing crop yields, N fertilization is still necessary for the best outcomes.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업 (세부과제번호: PJ012577)의 지원으로 수행되었습니다.

References

  1. Aggelides, S. M., Londra, P. A., 2000, Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil, Bioresource Technology., 71, 253-259.  https://doi.org/10.1016/S0960-8524(99)00074-7
  2. Ahn, B. K., Ko, D. Y., Kim, H. J., Kim, T. B., Chon, H. G., Kang. Y. G., 2019, Effects of soil improvement and growth of watermelon on plastic film house by two-year application of Miscanthus, Korean Journal of Environmental Agriculture., 38, 124-132.  https://doi.org/10.5338/KJEA.2019.38.3.27
  3. Backer, M., Ladha, J. K., Ottow, J. C. G., 1994, Nitrogen losses and lowland rice yield as affected by residue nitrogen release, Soil Science Society of America Journal., 58, 1660-1665.  https://doi.org/10.2136/sssaj1994.03615995005800060012x
  4. Beuch, S., Boelcke, B., Belau, L., 2000, Effect of the organic residues of Miscanthus giganteus on the soil organic matter level of arable soils, Journal of Agronomy and Crop Science., 183, 111-119.  https://doi.org/10.1046/j.1439-037x.2000.00367.x
  5. Bulluck III, L. R., Brosius, M., Evanylo, G. K., Ristaino, J. B., 2002, Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms, Applied Soil Ecology., 19, 147-160.  https://doi.org/10.1016/S0929-1393(01)00187-1
  6. Cassman, K. G., Peng, S., Olk, D. C., Ladha, J. K., Reichardt, W., Dobermann, A., Singh, U., 1998, Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems, Field Crops Research., 56, 7-39.  https://doi.org/10.1016/S0378-4290(97)00140-8
  7. Chen, S., Stephen, A. R., 2006, Miscanthus Andersson, Flora of China., 22, 581-583. 
  8. Christensen, B. T., Johnston, A. E., 1997, Soil organic matter and soil quality-Lessons learned from long-term experiments at Askov and Rothamsted, Developments in Soil Science., 25, 399-430.  https://doi.org/10.1016/S0166-2481(97)80045-1
  9. Dondini, M., Hastings, A., Saiz, G., Jones, M. B., Smith, P., 2009, The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions, GCB Bioenergy., 1, 413-425. 
  10. Fog, K., 1988, The effect of added nitrogen on rate of decomposition of organic matter, Biological Reviews., 63, 433-462. 
  11. Henriksen, T. M., Breland, T. A., 1999, Nitrogen availability effects on carbon mineralisation fungal and bacterial growth and enzyme activities during decomposition of wheat straw in soil, Soil Biology and Biochemistry., 31, 1121-1134.  https://doi.org/10.1016/S0038-0717(99)00030-9
  12. Hietz, P., 1992, Decomposition and nutrient dynamics of reed (Phragmites australis (Cav.) Trin. ex Steud.) litter in Lake Neusiedl, Austria, Aquatic Botany., 43, 211-230.  https://doi.org/10.1016/0304-3770(92)90068-T
  13. Hoffland, E., Greoenigen, J. W., Oenema. O., 2010, Nutrient management, Wageningen University, Wageningen, Netherlands. 
  14. Kaushik, N. K., Hynes, H. B. N., 1971, The fate of the dead leaves that fall into streams, Archiv fur Hydrobiologie., 9, 465-515. 
  15. Kirkby, C. A., Richardson, A. E., Wade, L. J., Batten, G. D., Blanchard, B. C., Kirkegaard, J. A., 2013, Carbon-nutrient stoichiometry to increase soil carbon sequestration, Soil Biology and Biochemistry., 60, 77-86.  https://doi.org/10.1016/j.soilbio.2013.01.011
  16. Lal, R., 2004, Agricultural activities and the global carbon cycle, Nutrient cycling in agroecosystems., 70, 103-116.  https://doi.org/10.1023/B:FRES.0000048480.24274.0f
  17. Lee, K. B., Kang, J. K., Kee, K. D., Gil, G. H., Lee, J. H., Kim, J. D., 2008, Soil physic-chemical properties of reclaimed land in Southwestern Korea, Korean Journal of Soil Science and Fertilizer., 9, 143. 
  18. Magill, A. H., Aber, J. D., 1998, Long-term effects of experimental nitrogen additions on folial litter deca and humus formation in forest ecosystems, Plant and Soil., 203, 301-311.  https://doi.org/10.1023/A:1004367000041
  19. Mahapatra, B. S., Sharma, G. L., Singh, N., 1991, Integrated management of straw and urea nitrogen in lowland rice under a rice-wheat rotation, The Journal of Agricultural Science., 116, 217-220.  https://doi.org/10.1017/S0021859600077601
  20. Marschner, H., 2012, Marschner's mineral nutrition of higher plants, 3rd ed.; Academic Press: London., 178-189. 
  21. Mason, C. F., 1976, Decomposition, Edward Arnold. Southampton. 
  22. Mendieta-Araica, B., Sporndly, E., Reyes-Sanchez, N., Salmeron-Miranda, F., Halling, M., 2013, Biomass production and chemical composition of Moringa oleifera under different planting densities and levels of nitrogen fertilization, Agroforestry Systems., 87, 81-92. 
  23. Moon, Y. H., Koo, B. C., Choi, Y. H., Ahn, S. H., Bark, S. T., Cha, Y. R., An, G. H., Kiam, J. K., Suh, S. J., 2010, Development of "Miscanthus" the promising bioenergy crop, Korean Journal of Weed Science., 30, 330-339.  https://doi.org/10.5660/KJWS.2010.30.4.330
  24. National Institute of Agricultural Science and Technology (NIAST), 2000,
  25. Methods of analysis of soil and plant, Suwon (in Korean): NIAST. 
  26. Peterson, B. J., Deegan, L., Helfrich, J., Hobbie, J. E., Hullar, M., Moller, B., Ford, T. E., Hershey, A., Hiltner, A., Kipphut, G., Lock, M. A., Fiebig, D. M., McKinley, V., Miller, M. C., Vestal, J., Ventullo, R., Volk, G., 1993, Biological responses of a tundra river to fertilization, Ecology., 74, 653-672.  https://doi.org/10.2307/1940794
  27. Powlson, D. S., Riche, A. B., Coleman, K., Glendining, M. J., Whitmore, A. P., 2008, Carbon sequestration in European soils through straw incorporation: limitations and alternatives, Waste Management., 28, 741-746.  https://doi.org/10.1016/j.wasman.2007.09.024
  28. Rural Development Administration, 2012, Agricultural Science and Technology Research and Analysis Criteria, 1st ed., Sambo., Suwon, 468-470. 
  29. Rural Development Administration, 2014, Food Crop Environmental Analysis Handbook, 1st ed., Social welfare foundation Hong Ae Won., Suwon, 20-35. 
  30. Salmeron-Miranda, F., Bath, B., Eckersten, H., Forkman, J., Wisvtad, M., 2007, Aboveground nitrogen in relation to estimated total plant uptake in maize and bean, Nutrient Cycling in Agroecosystems., 79, 125-139.  https://doi.org/10.1007/s10705-007-9102-x
  31. Scott, N. A., Binkley, D., 1997, Foliage litter quality and annual net N mineralization: Comparison across North American forest sites, Oecologia., 111, 151-159.  https://doi.org/10.1007/s004420050219
  32. Smith, R. L., Smith, T. M., 2001, Ecology and field biology, Benjamin Cummings, San Francisco. 
  33. Verma, T. S., Bhagat, R. M., 1992, Impact of rice straw management practices on yield, nitrogen uptake and soil properties in a wheat-rice rotation in northern India, Fertilizer research., 33, 97-106.  https://doi.org/10.1007/BF01051164
  34. Vityakon, P., 2007, Degradation and restoration of sandy soils under different agricultural land uses in northeast Thailand: a review, Land Degradation and Development., 18(5), 567-577.  https://doi.org/10.1002/ldr.798
  35. Wang, M. C., Yang, C. H., 2003, Type of fertilizer applied to a paddy-upland rotation affects selected soil quality attributes, Geoderma., 114, 93-108.  https://doi.org/10.1016/S0016-7061(02)00356-7
  36. Webster, J. R., Benfield, E.F., 1986, Vascular plant breakdown in freshwater ecosystems, Annual Review of Ecology and Systematics., 17, 567-594.  https://doi.org/10.1146/annurev.es.17.110186.003031
  37. Windham, L., 2001, Comparison of biomass production and decomposition between Phragmites australis (common reed) and Spartina patens (salt hay grass) in brackish tidal marshes of New Jersey, USA, Wetlands., 21, 179-188.  https://doi.org/10.1672/0277-5212(2001)021[0179:COBPAD]2.0.CO;2