• Title/Summary/Keyword: organic matter decomposition

Search Result 193, Processing Time 0.025 seconds

Treatment of Wastewater Containing Cu(II)-EDTA Using Ferrate in Sequencing Batch Scale System (연속회분식 반응 장치에서 Ferrate를 이용한 Cu(II)-EDTA 함유 폐수 처리 연구)

  • Kim, Hyoung-Uk;Kim, Byeong-Kwon;Lee, Seung-Mok;Yang, Jae-Kyu;Kim, Hyun-Ook;Kwan, Jung-An;Im, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.729-734
    • /
    • 2008
  • The higher valence state of iron i.e., Fe(VI) was employed for the treatment of Cu(II)-EDTA in the aqueous/waste waters. The ferrate(VI) was prepared through wet oxidation of Fe(III) by sodium hypochlorite. The purity of prepared Fe(VI) was above 93%. The stability of Fe(VI) solution decreased as solution pH decreased through self decomposition. The reduction of Fe(VI) was obtained by using the UV-Visible measurements. The dissociation of Cu(II)-EDTA complex through oxidation of EDTA using Fe(VI) and subsequent treatment of organic matter and metal ions by Fe(III) reduced from Fe(VI) in bench-scale of continuous flow reactor were studied. The removal efficiencies of copper were 69% and 79% in pH control basin and reactor, respectively, at 120 minutes as retention time. In addition, Cu(II)-EDTA in the reactor was decomplexated more than 80% after 120 minutes as retention time. From this work, a continuous treatment process for the wastewater containing metal and EDTA by employing Fe(VI) as muluti-functional agent was developed.

Studies on Degradation of Butachlor and Nitrofen in Different Soil Conditions (토양중(土壤中) Butachlor 와 Nitrofen의 분해(分解)에 관(關)한 연구(硏究))

  • Oh, Byung-Youl;Jeong, Young-Ho;Lee, Byung-Moo
    • Applied Biological Chemistry
    • /
    • v.24 no.2
    • /
    • pp.112-119
    • /
    • 1981
  • The persistence of preemergence herbicides, butachlor [2-chloro-2,6-diethyl-N(butoxymethyl) acetanilide] and nitrofen(2,4-dichlorophenyl-4-nitrophenyl ether), at 10 ppm level in different soil conditions amended with organic matter and lime was studied under flooded and field moisture capacity. The microbial breakdown played a major role in the dissipation of the herbicides in soil. Nitrofen degradation in flooded soil was greatly accelerated, while it was slowed down in field moisture capacity as compared with butachlor. Increased amendment of rice straw to the soil shortened the half-life of butachlor under flooded condition, however it prolonged that of butachlor when the amendment was exceeded over 1% on dry weight basis. Liming the soil stimulated decomposition of the herbicides in the soil systems, which ap pears to be pH independent.

  • PDF

Approaches for Developing a Forest Carbon and Nitrogen Model Through Analysis of Domestic and Overseas Models (국내외 모델 분석을 통한 산림 탄소 및 질소 결합 모델 개발방안 연구)

  • Kim, Hyungsub;Lee, Jongyeol;Han, Seung Hyun;Kim, Seongjun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.140-150
    • /
    • 2018
  • For the estimation of greenhouse gas dynamics in forests, it is useful to use a model which simulates both carbon (C) and nitrogen (N) cycle simultaneously. A forest C model, called FBDC, was developed and validated in Korea. However, studies on development of forest N model are insufficient. This study aimed to suggest a development process of a forest C and N model. We analyzed the general features, structures, ecological processes, input data, output data, and methods of integrating C and N cycles of the VISIT, Biome-BGC, Forest-DNDC, and O-CN. The structure and features of the FBDC were also analyzed. The VISIT was developed by integrating forest C model with a N cycle module, and the new model also could be designed by combining the FBDC with a N cycle module. The VISIT and Forest-DNDC could estimate soil $N_2O$ emissions, and the integrated model should include the processes shared by these models. Especially, the overseas models linked C and N cycles based on N absorption, C absorption, and decomposition of dead organic matter. Therefore, the integration of the FBDC with N cycle module should apply this linkage of structures between C and N cycles. Climate, soil texture, and species distribution data, which are essential for the model development, were available in Korea. However, parameter data associated with N cycle and validation data for soil $N_2O$ emissions need to be obtained by field studies.

The Study on the Phytoplankton Bloom and Primary Productivity in Lake Shihwa and Adajcent Coastal Areas (시화호와 시화호 주변 해역 식물플랑크톤의 대증식과 일차 생산력에 관한 연구)

  • Choi, Joong-Ki;Lee, Eun-Hee;Noh, Jae-Hoon;Huh, Sung-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1997
  • To clarify the phytoplankton blooms in Lake Shihwa after the construction of a dyke, a study on the environmental factors, the distribution of chlorophyll-a, phytoplankton standing stocks, dominant species and primary productivity was carried out in Lake Shihwa and adjacent coastal areas from October, 1995 to August, 1996. Lake Shihwa is brackish water with mixing of freshwater from tributaries and the remaining salt water at the bottom. The dense phytoplankton bloom of average value of 168.6 ${\mu}gChl-a\;l^{-1}$ have occurred throughout the year in Lake Shihwa which is eutrophicated by the large input of nutrients from inflowing 5 tributaries and Shihwa Industrial Complex. The major organisms of algal bloom in Lake Shihwa were diatoms, Cyclotella atomus, Nitzschia sp. and Chaetoceros sp. in autumn and winter, and dinoflagellate Prorocentrum minimum and Chrysophyceae in spring and summer. The autumn and winter diatom blooms were limited by the depletion of silicate in the lake. Diatom blooms have occurred in the coastal areas adjacent to Shihwa lake from winter to summer due to the inflow of nutrient rich-water from Lake Shihwa. The primary productivities in the Lake Shihwa ranged from 2,653 mgC $m^{-2}\;day^{-1}$ to 9,505 mgC $m^{-2}\;day^{-1}$ with an average of 3,972 mgC $m^{-2}\;day^{-1}$. However, most of the high primary production was limited to the shallow euphotic zone due to the inhibition of light penetration. The primary productivities during autumn and winter were limited by the depletion of silicate. Lack of photosynthesis and the decomposition of falling organic matter under the middle of water column accelerated the depletion of dissolved oxygen in the bottom layer.

  • PDF

Characteristics of the media under a self-propelled compost turner in button mushroom cultivation (양송이버섯 재배시 자주식 배지교반기 활용 배지의 특성 및 수량성)

  • Lee, Chan-Jung;Yu, Byeong-Kee;Park, Hye-sung;Lee, Eun-Ji;Min, Gyeong-Jin
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.274-279
    • /
    • 2020
  • This study was conducted to investigate the characteristics of the medium used on the composting step, comparing the excavator agitator with the self-propelled turner. The temperature of the outdoor composting medium tended to increase rapidly after flipping in the turner. The late composting medium temperature was maintained at the excavator treatment area (farm practice), and the late composting effect progressed. During the field composting stage, various microorganisms such as Bacillus spp., Actinomycetes, fluorescent Pseudomonas spp., and filamentous fungi were distributed in the medium, and the density of aerobic bacteria involved in the decomposition of the medium was increased. Under high-temperature composting conditions, blue fungi, and mesophilic actinomycetes were inhibited or killed. Thermophilic actinomycetes, which play an important role in decomposing organic matter, showed higher densities than those observed in farm practices in the self-propelled turner process. The length of rice straw was slightly shorter when the self-propelled turner was used, and the water content did not show any significant difference between treatments. The a and b values tended to increase as the inverter was turned over. The CN ratio of the composting broth was lowered from 23.1 to 16.2 for the 5th turnover in the context of farming practices, and from 23.3 to 16.9 in the context of the self-propelled turner. The yield of each treatment was increased by 20% in 1 period, 28% in 2 periods, and 26% in 3 periods; the overall yield was 23%.

Changes in Soil Physicochemical Properties and Dehydrogenase Activity by the Formation of Fairy Ring of Tricholoma matsutake (송이 균환(菌環)의 발달(發達)에 따른 토양(土壤)의 이화학적(理化學的) 특성(特性)과 탈수소효소(脫水素酵素)의 활성(活性) 변화(變化))

  • Huh, Tae-Chul;Park, Hyun;Chung, Jin-Hyun;Joo, Sung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.270-275
    • /
    • 1998
  • The management of pine-mushroom forest means the environmental control for fairy ring of Tricholoma matsutake. Thus, the management demands intensive study for keeping healthy condition of the fairy ring, and that for the measurement of active portion of the soil ecosystem. This study was conducted to investigate the impact of T. matsutake fungus on the soil physicochemical properties and dehydrogenase activity by dividing the fairy ring into 3 regions such as 'zone of decayed mycorrhizae', 'zone of physiologically active mycorrhizae', and 'in front of fairy ring'. The passing of T. matsutake did not result in significant changes in canon contents of soils, but available phosphorus, carbon, and nitrogen contents were different between the soils of active mycorrhizal zone and that in front of fairy ring. The dehydrogenase activity around the fairy ring of T. matsutake was quite lower than that in general forest soils, which indicated that the fairy ring of T. matsutake was built up in the relatively immature soils which contain little organic matter. Thus, the dehydrogenase activity of soil was thought to be used as an index for the management of pine-mushroom forest with considering that the management practically means the environmental control for keeping good conditions for the development of fairy ring of T. matsutake. Especially, the dehydrogenase activity measurement can be recommended as a tool for time-decision of litter removal by floor raking since the activity is a good index of litter decomposition.

  • PDF

Effects of Barley Straw Application and Tillage Method on Soil Physical Property and Soybean Yield in Paddy Field (논에서 콩 재배시 보릿짚 시용과 경운방법에 따른 토양 물리성과 수량)

  • Lee, Sang-Bok;Kim, Byong-Soo;Kang, Jong-Gook;Kim, Sun;Kim, Jai-Duk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.593-598
    • /
    • 2006
  • This study was conducted to investigate the effect of tillage methods such as plowing and rotary tillage (PRT), rotary tillage (RTG), no-tillage after barley straw application (NTB), and barley straw mulching after plowing and rotary tillage (BPR) on the growth and the yield of soybean when cultivated after the cultivation of barley. The methods were compared with the control method in which plowing and rotary tillage after barley straw incineration was applied. Barley straw application resulted in increase in organic matter, total nitrogen, phosphate, and exchangeable cation regardless of tillage methods. Porosity and moisture level in paddy soil was ranked as follows : PRT > RTG > BPR > control > NTB. Decomposition rate of barley straw dramatically increased to 41.7% toward 30 days after soybean sowing, higher in NTB, DRB, and RTG than in BPR. Weed occurrence was decreased 36% in NTB and 40% in BPR. Root activity, nodulation and the dry weight per plant of soybean at flowering stage were highest in NTB and lowest in PRT. Soybean yield in NTB was 3,070 kg/ha increasing 19%, whereas that in PRT was not increased. Therefore in case of a frequent rain during the cultivation of soybean in paddy field PRT could result in excess moisture level in soil, the cultivation without tillage is desirable.

Heavy Metal (Zn, Cu, Cd, Pb) Distribution and its Form of the Sludges on Keumho River and Her Branches (금호강(琴湖江) 및 그 지류(支流)의 하상(河床) 퇴적오니중(堆積汚泥中) 중금속(重金屬) ( Zn, Cu, Cd, Pb) 분포(分布)와 그 형태(形態))

  • Lee, Jyung-Jae;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.1
    • /
    • pp.30-34
    • /
    • 1986
  • This study was carried out to determine the heavy metal contents in sluges of Keumho river and her branches. The heavy metal contents of sludge are the highest in Sincheon, Kongdancheon and Dalseocheon among the branches. The large part of heavy metal exists in $0{\sim}5cm$ from sludge surface. The sequential extraction with various reagents showed that the residual and organically bound fraction were the most abundant pool. Decomposition of organic matter caused sludge to release heavy metals. On the extraction of sludge with various solution having different pH, it was found that the lower the pH, the more heavy metal was extracted. However, considerable amount of heavy metal was not extracted even with pH 3 solution.

  • PDF

The Characteristics of Oxygen Deficient Water Mass in Gamak Bay (가막만 빈산소 수괴의 특성)

  • Kim, Jeong-Bae;Lee, Sang-Yong;Yu, Jun;Choi, Yang-Ho;Jung, Chang-Su;Lee, Pil-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.216-224
    • /
    • 2006
  • To clarify the formation process and characteristics of oxygen deficient water mass in Gamak Bay, oxygen deficiency was weekly observed from 17 June to 12 September 2005. Surface water temperature was significantly lower in the outer bay than in the inner bay, whereas the bottom water temperature was higher in the central area of bay than in the outer and inner bay. The vertical stratification of water mass was strongly formed during the period, and thermocline was observed between 3 and 5m deep. The oxygen deficiency in the bottom layer began to appear at early July in the inner bay and gradually spread to the center area of the bay in early August. The mean transparency and light attenuation coefficient($K_d$) in water mass was 4.0m and 0.47, respectively. Average concentrations of nutrient and chlorophyll ${\alpha}$ in the bottom layer were significantly higher than those in surface, and those concentrations were significantly higher in the inner bay than in the outer bay. During the formation of oxygen deficiency in the bottom layer, oxygen penetration depth in the bottom sediment were extremely shallow, and oxygen consumption rate in the bottom sediment were lower than that in the area where oxygen deficient water mass disappeared. Dissolved oxygen concentrations in the bottom layer are negatively correlated with nutrient concentrations, whereas those in the surface layer did not show a significant relationship with nutrient concentrations. Elevated loss of oxygen in the bottom water mass was attributed to the increase of the oxygen consumption rates in sediments and the decomposition of organic matter by microorganism.

  • PDF

Characteristics of Water Quality In the Shihwa Lake and Outer Sea (시화호 및 주변해역의 수질 특성)

  • Jang, Jeong-Ik;Han, Ihn-Sub;Kim, Kyung-Tae;Ra, Kong-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.105-121
    • /
    • 2011
  • The operation of tidal power facility may induce severe changes of water quality in Shihwa Lake. Current water quality data are quite important to water quality management policy of Shihwa Lake. Thus, the water quality data of Shihwa Lake and its adjacent sea in 2010 were presented to characterize the temporal and spatial changes of water parameters such as pH, SS, DO, COD, dissolved nutrients, chlorophyll-a, TN and TP. Highest levels of water quality parameters were observed near the Shihwa and Banweol industrial complexes and the levels of water quality parameters were on a decreasing trend to those near the water gate. It suggests that the horizontal distributions of water quality levels are mainly controlled by the supply of fresh water from streams and the inflow of outer seawater by operation of water gate. Although the higher concentrations of TN and TP were observed in the location being affected by Sorae port, the levels of water quality parameters in outer sea of Shihwa Lake were lower than those in Lake. In summer season, hypoxic condition was well developed in bottom water by strong stratification and active decomposition of organic matter. Thus, the vertical distributions of dissolved nutrient, TN and TP concentrations showed the concentrations to be higher in bottom seawater than those in surface seawater whereas the vertical distributions of chlorophyll-a, COD and POC concentrations showed the concentrations to be higher in surface seawater than those in bottom water. Results of Pearson's correlation matrix for surface seawater demonstrated that salinity showed negatively good correlation with not only dissolved nutrients except for ammonium but chlorophyll-a, COD and POC This result indicates that the supply of dissolved nutrients through several streams might significantly affect phytoplankton bloom and increase of COD concentration in surface seawater.