DOI QR코드

DOI QR Code

Approaches for Developing a Forest Carbon and Nitrogen Model Through Analysis of Domestic and Overseas Models

국내외 모델 분석을 통한 산림 탄소 및 질소 결합 모델 개발방안 연구

  • Kim, Hyungsub (Department of Environmental Science and Ecological Engineering, Korea University,) ;
  • Lee, Jongyeol (Institute of Life Science and Natural Resources, Korea University) ;
  • Han, Seung Hyun (Department of Environmental Science and Ecological Engineering, Korea University,) ;
  • Kim, Seongjun (Department of Environmental Science and Ecological Engineering, Korea University,) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Korea University,)
  • 김형섭 (고려대학교 환경생태공학과) ;
  • 이종열 (고려대학교 생명자원연구소) ;
  • 한승현 (고려대학교 환경생태공학과) ;
  • 김성준 (고려대학교 환경생태공학과) ;
  • 손요환 (고려대학교 환경생태공학과)
  • Received : 2018.05.04
  • Accepted : 2018.05.31
  • Published : 2018.06.30

Abstract

For the estimation of greenhouse gas dynamics in forests, it is useful to use a model which simulates both carbon (C) and nitrogen (N) cycle simultaneously. A forest C model, called FBDC, was developed and validated in Korea. However, studies on development of forest N model are insufficient. This study aimed to suggest a development process of a forest C and N model. We analyzed the general features, structures, ecological processes, input data, output data, and methods of integrating C and N cycles of the VISIT, Biome-BGC, Forest-DNDC, and O-CN. The structure and features of the FBDC were also analyzed. The VISIT was developed by integrating forest C model with a N cycle module, and the new model also could be designed by combining the FBDC with a N cycle module. The VISIT and Forest-DNDC could estimate soil $N_2O$ emissions, and the integrated model should include the processes shared by these models. Especially, the overseas models linked C and N cycles based on N absorption, C absorption, and decomposition of dead organic matter. Therefore, the integration of the FBDC with N cycle module should apply this linkage of structures between C and N cycles. Climate, soil texture, and species distribution data, which are essential for the model development, were available in Korea. However, parameter data associated with N cycle and validation data for soil $N_2O$ emissions need to be obtained by field studies.

산림에서 온실가스 동태를 모의하기 위해서는 탄소 및 질소 순환을 종합적으로 모의하는 모델을 활용할 필요가 있다. 국내에는 한국형 산림 탄소 모델인 FBDC 모델이 개발되어 탄소 저장량 및 변화량을 추정하고 타당성 검토도 진행된 바 있으나, 질소 순환을 모의하는 모델의 개발 사례는 부족한 상황이다. 따라서 본 연구에서는 문헌조사를 바탕으로 우리나라의 실정에 적합한 산림 탄소 및 질소 결합 모델의 개발방안을 제시하고자 한다. 이를 위하여 VISIT, Biome-BGC, Forest-DNDC, O-CN 등 모델의 일반적 특징, 구조, 생태적 과정, 입력 자료, 출력 자료, 탄소 및 질소 순환의 결합 방법을 분석하였으며, FBDC 모델의 구조와 특징도 분석하였다. 이러한 모델을 분석한 결과 기존의 탄소 순환 모델에 질소 순환 구조를 결합하여 개발된 VISIT 모델을 참고하여, FBDC 모델과 질소 순환 구조를 결합하는 방식으로 새로운 모델을 설계할 수 있을 것으로 보인다. 그리고 새로 개발될 모델이 토양 $N_2O$ 배출을 모의하기 위해서는 질소 순환 구조에 VISIT과 Forest-DNDC 모델에서 공통적으로 모의하는 생태적 과정들이 포함될 필요가 있다. 또한 모든 국외 모델들은 임목의 탄소와 질소 흡수, 고사유기물의 분해 과정을 중심으로 탄소 및 질소 순환을 유기적으로 연결하고 있으며, 이러한 연결 구조를 FBDC 모델과 질소 순환 구조의 결합에 활용할 수 있을 것으로 보인다. 한편 모델 개발에 필요한 기상, 토성, 수종 분포 등의 입력 자료는 국내에서 확보할 수 있으나, 토양에서 배출되는 $N_2O$에 대한 검증 자료와 질소 순환과 관련된 일부 파라미터 자료는 현지조사를 통하여 확보해야 할 것으로 사료된다.

Keywords

References

  1. Aber, J.D. and Federer, C.A. 1992. A generalized, lumped- parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92(4): 463-474. https://doi.org/10.1007/BF00317837
  2. Bala, G., Devaraju, N., Chaturvedi, R.K., Caldeira, K. and Nemani, R. 2013. Nitrogen deposition: how important is it for global terrestrial carbon uptake?. Biogeosciences 10(11): 7147-7160. https://doi.org/10.5194/bg-10-7147-2013
  3. Bashkin, V.N., Park, S.U., Choi, M.S. and Lee, C.B. 2002. Nitrogen budgets for the Republic of Korea and the Yellow Sea region. In The Nitrogen Cycle at Regional to Global Scales. Springer. Dordrecht, Netherlands.
  4. Churkina, G., Trusilova, K., Vetter, M. and Dentener, F. 2007. Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake. Carbon Balance and Management 2(1): 5. https://doi.org/10.1186/1750-0680-2-5
  5. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. and Totterdell, I.J. 2000. Acceleration of global warming due to carboncycle feedbacks in a coupled climate model. Nature 408: 184-187. https://doi.org/10.1038/35041539
  6. Drewniak, B. and Gonzalez-Meler, M.A. 2017. Earth system model needs for including the interactive representation of nitrogen deposition and drought effects on forested ecosystems. Forests 8(8): 267. https://doi.org/10.3390/f8080267
  7. Han, S.H., Lee, J., Choi, S., Kim, S. and Son, Y. 2014. Analysis on oversea forest carbon models to develop a Korea-specific forest carbon model. Life Science and Natural Resources Research 21: 55-66. (In Korean)
  8. Han, S.H., Lee, S.J., Chang, H., Kim, S., Kim, R., Jeon, E.C. and Son, Y. 2017. Priority for developing emission factors and quantitative assessment in the forestry sector. Journal of Climate Change Research 8(3): 239-245. (In Korean with English abstract) https://doi.org/10.15531/ksccr.2017.8.3.239
  9. Inatomi, M., Ito, A., Ishijima, K. and Murayama, S. 2010. Greenhouse gas budget of a cool-temperate deciduous broad-leaved forest in Japan estimated using a process-based model. Ecosystems 13(3): 472-483. https://doi.org/10.1007/s10021-010-9332-7
  10. IPCC. 2006. 2006 IPCC guidelines for national greenhouse gas inventories. Hayama, Japan.
  11. Ito, A. 2010. Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model. Journal of Plant Research 123(4): 577-588. https://doi.org/10.1007/s10265-009-0305-x
  12. Ito, A. and Oikawa, T. 2002. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecological Modelling 151(2-3): 143-176. https://doi.org/10.1016/S0304-3800(01)00473-2
  13. Kim, D.S. and Kim, S. 2013. $N_2O\;and\;CH_4$ emission from upland forest soils using chamber methods. Jounal of Korean Society for Atmospheric Environment 29(6): 789-800. (In Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.6.789
  14. Kim, H., Kim, Y.H., Kim, R. and Park, H. 2015. Reviews of forest carbon dynamics models that use empirical yield curves: CBM-CFS3, CO2FIX, CASMOFOR, EFISCEN. Forest Science and Technology 11(4): 212-222. https://doi.org/10.1080/21580103.2014.987325
  15. Kim, Y.S., Yi, M.J., Lee, Y.Y., Kobayashi, M. and Son, Y. 2009. Estimation of carbon storage, carbon inputs, and soil $CO_2$ efflux of alder plantations on granite soil in central Korea: comparison with Japanese larch plantation. Landscape and Ecological Engineering 5(2): 157-166. https://doi.org/10.1007/s11355-008-0056-1
  16. Kim, Y.S., Yi, M.J., Lee, Y.Y., Son, Y. and Koike, T. 2012. Characteristics of soil $CO_2$ efflux in even-aged alder compared to Korean pine plantations in central Korea. Journal of Forest and Environmental Science 28(4): 232-241. https://doi.org/10.7747/JFS.2012.28.4.232
  17. Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S. and Prentice, I.C. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19(1): GB1015. https://doi.org/10.1029/2003GB002199
  18. Kurz, W.A. et al. 2009. CBM-CFS3: a model of carbon- dynamics in forestry and land-use change implementing IPCC standards. Ecological Modelling 220(4): 480-504. https://doi.org/10.1016/j.ecolmodel.2008.10.018
  19. Lee, A.R., Yi, K., Son, Y., Kim, R., Kim, C., Park, G.S., Lee, K.H. and Yi, M.J. 2010a. Approaches for developing a Korean model through analysis of overseas forest soil carbon models. Jounal of Korean Forest Society 99(6): 791-801. (In Korean with English abstract)
  20. Lee, I.K. and Son, Y. 2004. Effects of nitrogen and phosphorus fertilization on seasonal changes and retranslocation of nutrition in foliage and twig of Pinus rigida and Larix kaempferi. Korean Journal of Ecology 27(4): 199-210. (In Korean) https://doi.org/10.5141/JEFB.2004.27.4.199
  21. Lee, I.K. and Son, Y. 2006a. Effects of nitrogen and phosphorus fertilization on nutrient dynamics and litterfall production of Pinus rigida and Larix kaempferi. Journal of Ecology and Field Biology 29(3): 205-212. (In Korean with English abstract) https://doi.org/10.5141/JEFB.2006.29.3.205
  22. Lee, I.K. and Son, Y. 2006b. Effects of nitrogen and phosphorus fertilization on soil nitrogen mineralization of Pinus rigida and Larix kaempferi plantations in Yangpyeong area, Gyeonggi province. Journal of Korean Forest Society 95(1): 82-90. (In Korean with English abstract)
  23. Lee, J., Yoon, T.K., Han, S., Kim, S., Yi, M.J., Park, G.S., Kim, C., Son, Y.M., Kim, R. and Son, Y. 2014. Estimating the carbon dynamics of South Korean forests from 1954 to 2012. Biogeosciences 11(17): 4637-4650. https://doi.org/10.5194/bg-11-4637-2014
  24. Lee, N.Y., Koo, J.W., Noh, N.J., Kim, J. and Son, Y. 2010b. Seasonal variation in soil $CO_2$ efflux in evergreen coniferous and broad-leaved deciduous forests in a cool- temperate forest, central Korea. Ecological Research 25(3): 609-617. https://doi.org/10.1007/s11284-010-0691-5
  25. Lee, S.C., Choi, S.H., Lee, W.K., Yoo, S.J. and Byun, J.G. 2011. The effect of climate data applying temperature lapse rate on prediction of potential forest distribution. Journal of the Korean Society for Geo-spatial Information Science 19(2): 19-27. (In Korean with English abstract)
  26. Lee, S.K., Son, Y., Noh, N.J., Heo, S.J., Yoon, T.K., Lee, A.R., Razak, S.A. and Lee, W.K. 2009a. Carbon storage of natural pine and oak pure and mixed forests in Hoengseong, Kangwon. Journal of Korean Forest Society 98(6): 772-779. (In Korean with English abstract)
  27. Lee, S.K., Son, Y., Noh, N.J., Yoon, T.K., Lee, A.R., Seo, K.W., Hwang, J. and Bae, S.W. 2009b. Carbon storage of pure and mixed pine-deciduous oak forests in Gwangneung, central Korea. Journal of Ecology and Field Biology 32(4): 237-247.
  28. Lee, Y.Y. and Son, Y. 2005. Diurnal and seasonal patterns of nitrogen fixation in Alnus hirsuta plantation of central Korea. Journal of Plant Biology 48(3): 332-337. https://doi.org/10.1007/BF03030531
  29. Li, C., Frolking, S. and Frolking, T.A. 1992. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres 97(D9): 9759-9776. https://doi.org/10.1029/92JD00509
  30. Li, C., Frolking, S. and Harriss, R. 1994. Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles 8(3): 237-254. https://doi.org/10.1029/94GB00767
  31. Li, C., Trettin, C., Ge, S., McNulty, S. and Butterbach-Bahl, K. 2005. Modelling carbon and nitrogen biogeochemistry in forest ecosystems. 3rd International Nitrogen Conference. 893-898.
  32. Nam, Y.H., An, S.W. and Park, J.W. 2011. Nitrogen budget of South Korea in 2008: evaluation of non-point source pollution and $N_2O$ emission. Journal of Korean Society of Environmental Engineers 33(2): 103-112. (In Korean with English abstract) https://doi.org/10.4491/KSEE.2011.33.2.103
  33. National Institute of Forest Science (NIFoS). 2011. The 5th national forest inventory report. National Institute of Forest Science. Korea. (In Korean)
  34. National Institute of Forest Science (NIFoS). 2016. Development of technology for monitoring, evaluating and managing the effects of forest soil acidification. National Institute of Forest Science. Korea. (In Korean)
  35. Noh, N.J., Kim, C., Bae, S.W., Lee, W.K., Yoon, T.K., Muraoka, H. and Son, Y. 2013. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities. Journal of Plant Ecology 6(5): 368-379. https://doi.org/10.1093/jpe/rtt007
  36. Noh, N.J., Son, Y., Lee, S.K., Seo, K.W., Heo, S.J., Yi, M.J., Park, P.S., Son, Y.M. and Lee, K.H. 2010a. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea. Science China Life Sciences 53(7): 822-830. https://doi.org/10.1007/s11427-010-4018-0
  37. Noh, N.J., Son, Y., Koo, J.W., Seo, K.W., Kim, R.H., Lee, Y.Y. and Yoo, K.S. 2010b. Comparison of nitrogen fixation for north- and south-facing Robinia pseudoacacia stands in central Korea. Journal of Plant Biology 53(1): 61-69. https://doi.org/10.1007/s12374-009-9088-9
  38. Park, S.U. and Lee, Y.H. 2002. Spatial distribution of wet deposition of nitrogen in South Korea. Atmospheric Environment 36(4): 619-628. https://doi.org/10.1016/S1352-2310(01)00489-7
  39. Park, S.U., Lee, Y.H. and Lee, E.H. 2002. Estimation of nitrogen dry deposition in South Korea. Atmospheric Environment 36(31): 4951-4964. https://doi.org/10.1016/S1352-2310(02)00332-1
  40. Running, S.W. and Hunt Jr, E.R. 1993. Generalization of a forest ecosystem process model for other biomes, BIOME- BGC, and an application for global-scale models. pp. 141-158. In: Ehleringer, J.R., Field, C.B. (Eds.). Scaling Physiological Processes: Leaf to Globe. Academic Press. San Diego, U.S.A.
  41. Running, S.W., Baldocchi, D.D., Turner, D.P., Gower, S.T., Bakwin, P.S. and Hibbard, K.A. 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment 70(1): 108-127. https://doi.org/10.1016/S0034-4257(99)00061-9
  42. Schulze, E.D. 2000. The carbon and nitrogen cycle of forest ecosystems. In carbon and nitrogen cycling in European forest ecosystems. Springer-Verlag Berlin Heidelberg GmbH. Jena, Germany.
  43. Sokolov, A.P., Kicklighter, D.W., Melillo, J.M., Felzer, B. S., Schlosser, C.A. and Cronin, T.W. 2008. Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. Journal of Climate 21(15): 3776-3796. https://doi.org/10.1175/2008JCLI2038.1
  44. Son, Y. 2001. Non-symbiotic nitrogen fixation in forest ecosystems. Ecological Research 16(2): 183-196. https://doi.org/10.1046/j.1440-1703.2001.00385.x
  45. Son, Y. and Lee, I.K. 1997. Soil nitrogen mineralization in adjacent stands of larch, pine and oak in central Korea. Annals of Forest Science 54(1): 1-8. https://doi.org/10.1051/forest:19970101
  46. Son, Y., Kim, J.T., Lee, S.E. and Lee, I.K. 1995. Differences of nitrogen mineralization in Larix decidua, Pinus strobus, and Thuja occidentalis plantations of the Kwangneung experimental forest, Kyonggi province. Korean Journal of Ecology 18(3): 385-395. (In Korean with English abstract)
  47. Son, Y., Lee, W.K., Lee, S.E. and Ryu, S.R. 1999. Effects of thinning on soil nitrogen mineralization in a Japanese larch plantation. Communications in Soil Science and Plant Analysis 30(17): 2539-2550. https://doi.org/10.1080/00103629909370393
  48. Son, Y., Lee, Y.Y., Lee, C.Y. and Yi, M.J. 2007. Nitrogen fixation, soil nitrogen availability, and biomass in pure and mixed plantations of alder and pine in central Korea. Journal of Plant Nutrition 30(11): 1841-1853. https://doi.org/10.1080/01904160701628999
  49. Yi, K., Park, C.W., Ryu, S.R., Lee, K. H., Yi, M. J., Kim, C., Park, G.S., Kim, R. and Son, Y. 2013. Simulating the soil carbon dynamics of Pinus densiflora forests in central Korea. Scandinavian Journal of Forest Research 28(3): 241-256. https://doi.org/10.1080/02827581.2012.735698
  50. Yoon, T.K., Noh, N.J., Han, S., Lee, J. and Son, Y. 2014. Soil moisture effects on leaf litter decomposition and soil carbon dioxide efflux in wetland and upland forests. Soil Science Society of America Journal 78(5): 1804-1816. https://doi.org/10.2136/sssaj2014.03.0094
  51. Yoon, T.K., Noh, N.J., Chung, H., Yang, A.R. and Son, Y. 2015. Soil nitrogen transformations and availability in upland pine and bottomland alder forests. Forests 6(9): 2941-2958. https://doi.org/10.3390/f6092941
  52. You, Y.H., Kim J.H., Mun, H.T. and Lee, C.S. 2002. Input, output and budget of nitrogen and sulphur in forested watershed ecosystems. Korean Journal of Ecology 25(3): 189-195. (In Korean with English abstract)
  53. Zaehle, S. and Friend, A.D. 2010. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site scale evaluation, and sensitivity to parameter estimates. Global Biogeochemical Cycles 24(1): GB1005.