• Title/Summary/Keyword: organic light emitting display

Search Result 613, Processing Time 0.028 seconds

Phosphorescent Iridium(III) Complexes based on the ppy Ligands Containing Electron-withdrawing Carbonyl Groups

  • Lee, Kum-Hee;Park, Jeong-Keun;You, Jae-Nam;Seo, Ji-Hyun;Kim, Young-Kwan;Yoon, Seung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.762-766
    • /
    • 2009
  • We have synthesized and demonstrated a red emission in Organic Light Emitting Diodes (OLEDs) using phosphorescent iridium(III) complexes based on the 2-phenylpyridine ligands with electron-withdrawing carbonyl groups. Among those, a device exhibited highly efficient red-orange emission with the luminance of 20460 cd/$m^2$ at 12 V, the luminous efficiency of 22.0 cd/A at 20 mA/$cm^2$, and the $CIE_{x,y}$ coordinates of (x=0.560, y=0.439 ) at 10 V.

  • PDF

Study on the Reliability of an OLED Pixel Circuit Using Transient Simulation (과도상태 시뮬레이션을 사용한 OLED 픽셀 회로의 신뢰성 분석 방안 연구)

  • Jung, Taeho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.141-145
    • /
    • 2021
  • The brightness of the Organic Light Emitting Diode (OLED) display is controlled by thin-film transistors (TFTs). Regardless of the materials and the structures of TFTs, an OLED suffers from the instable threshold voltage (Vth) of a TFT during operation. When designing an OLED pixel with circuit simulation tool such as SPICE, a designer needs to take Vth shift into account to improve the reliability of the circuit and various compensation methods have been proposed. In this paper, the effect of the compensation circuits from two typical OLED pixel circuits proposed in the literature are studied by the transient simulation with a SPICE tool in which the stretched-exponential time dependent Vth shift function is implemented. The simulation results show that the compensation circuits improve the reliability at the beginning of each frame, but Vth shifts from all TFTs in a pixel need to be considered to improve long-time reliability.

Design of Zero-Stress Encapsulation for Mechanical Stability of Flexible OLED Displays (유연 OLED 디스플레이의 기계적 안정성을 위한 제로 스트레스 봉지막 설계)

  • Jeong, Eun Gyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2022
  • In this paper, a study was conducted on encapsulation technology for high mechanical stability of flexible displays. First, unlike conventional encapsulation barrier that exclude cracks as much as possible for low water vapor transmission rate (WVTR), mechanical properties were improved by using a defect suppression mechanism introduced with crack arresters. The zero-stress encapsulation barrier optimizes the residual stress of the thin film based to improve the internal mechanical stability. The zero-stress encapsulation barrier was applied to the organic light emitting diodes (OLEDs) to confirm its characteristics and lifetime. Due to improved internal mechanical stability, it has a longer lifetime more than 35% compared to conventional encapsulation technologies. As the zero-stress encapsulation barrier proposed in this study does not require additional deposition process, it is not difficult to apply it. Based on various advantages, it is expected to play an important role in flexible displays.

저온 선형 PECVD를 이용한 OLED용 Encapsulation 특성 연구

  • Yun, Seung-Jin;Kim, Seong-Jin;Choe, Jeong-Su;Jo, Byeong-Seong;Jeong, Seok-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.180-180
    • /
    • 2016
  • 최근 디스플레이 시장의 주요 키워드는 flexible organic light emitting diode (OLED) 이다. OLED 소자의 수명을 결정하는 가장 큰 요인 중의 하나는 공기 중의 O2와 H2O에 의한 유기물의 열화이다. 따라서 공기 중의 O2나 H2O가 유기물에 쉽게 침투하는 것을 막는 것은 소자의 수명 향상을 위하여 필수적이라 할 수 있다[1-3]. SiNx 박막은 경질로 투과성이 우수하며, 화학적 불활성인 특성으로 이러한 Barrier 역할로 연구되어 산업분야에 다양하게 응용되고 있다[4]. SiNx 박막은 일반적으로 plasma enhanced chemical vapor deposition (PECVD) 기술을 이용하여 증착되는데 기존의 PECVD 기술을 이용한 SiNx 박막은 낮은 water vapor transmission rate (WVTR) 등의 문제점들로 인해 한계점이 들어났다. 본 연구에서는, flexible display의 thin film encapsulation (TFE) 공정에서의 적용을 알아보기 위해 $370{\times}470$ size를 증착할 수 있는 In-line 장비를 이용하였으며, 기존의 PECVD 기술의 문제점으로 지적되고 있는 낮은 WVTR을 해결하기 위하여 저온 (<$100^{\circ}C$) 선형 PECVD 기술을 이용하여 WVTR을 개선하고자 하였다. 공정가스로는 SiH4와 NH3를 사용하였으며, SiH4 Carrier 가스로 He을 추가적으로 사용하였다. 또한 공정 압력은 100mTorr를 유지하였다. 증착된 SiNx 박막의 물리적, 화학적 특성 분석을 위해 분광엘립소메타, field emission electron microscopy (FESEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) 등을 이용하여 측정하였으며, 박막에 투습되는 수분의 양은 MOCON사의 AQUATRAN 2(W)로 측정하였다. OLED 소자를 구현하기 위해서는 기본적으로 봉지층에 투습되는 양을 $10-6g/m2{\cdot}day$ 이하로 막아줘야 한다고 알려져 있으나, 기존의 PECVD 기술을 이용하여 제작된 SiNx 박막의 WVTR은 $10-2{\sim}10-3g/m2{\cdot}day$ 레벨의 WVTR 결과를 보이고 있다. 본 연구에서 사용된 저온 선형 PECVD 기술을 이용하여 제작된 SiNx 박막의 WVTR은 $5.0{\times}10-5g/m2{\cdot}day$ 이하의 개선된 결과를 확인 할 수 있었다. 또한 flexible display에 적용하기 위해 SiNx 박막의 두께를 최소화한 100nm의 두께에서도 WVTR은 $5.0{\times}10-5g/m2{\cdot}day$ 이하의 결과가 유지됨을 알 수 있었다.

  • PDF

Study on Surface Characteristics of Fe Doped MgO Protective Layer (Fe가 첨가된 MgO 보호막의 표면특성 개선에 관한 연구)

  • Lee, Don-Kyu;Park, Cha-Soo;Kim, Kwong-Toe;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • In order to compete with other flat display devices such as Liquid Crystal Displays (LCDs) and organic light emitting diodes (OLEDs), Plasma Display Panels (PDPs) require to have high performances like high image quality, low power consumption and high speed driving. In this paper, Fe doped MgO protective layer was introduced for higher performance. Both the surface characteristics of the deposited thin films and the electro-optical properties of 4 inch test panels were investigated. It has been demonstrated experimentally that ac PDP with Fe doped MgO protective layer has lower discharge voltage than that of undoped MgO film, which corresponds to measured secondary electron emission coefficients. The crystallinity and surface roughness of thin films were determined by XRD patterns and AFM images. In addition, ac PDP with Fe doped MgO protective layer has improved address discharge time lag for high speed driving.

Characterization of High Efficient Red Phosphorescent OLEDs Fabricated on Flexible Substrates (연성기판위에 제작된 고효율 Red 인광 OLED의 특성평가)

  • Kim Sung Hyun;Lee Yoo Jin;Byun Ki Nam;Jung Sang Yun;Lee Bum Sung;Yoo Han Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-19
    • /
    • 2005
  • The organic light-emitting devices(OLEDs) based on fluorescence have low efficiency due to the requirement of spin-symmetry conservation. By using the phosphorescent material, the internal quantum efficiency can reach 100$\%$, compared to 25$\%$ in case of the fluorescent material [1]. Thus recently phosphorescent OLEDs have been extensively studied and showed higher internal quantum efficiency than conventional OLEDs. In this study, we have applied a new Ir complex as a red dopant and fabricated a red phosphorescent OLED on a flexible PC(Polycarbonate) substrate. Also, we have investigated the electrical and optical properties of the devices with a structure of A1/LiF/Alq3/(RD05 doped)BAlq/NPB/2-TNAIA/ITO/PC substrate. Our device showed the lightening efficiency of > 30 cd/A at an initial brightness of 1000 cd/$m^{2}$. The CIE(Commission Internationale de L'Eclairage) coordinates for the device were (0.62,0.37) at a current density of 1 mA/$cm^{2}$. In addition, although the sheet resistance of ITO films on PC substrate is higher than that on glass substrate, the flexible OLED showed much better lightening efficiency without much increase in operating voltage.

  • PDF

2-Wavelength Organic Light-Emitting Diodes by selectively doping of RP-411 in the Host of $Bebq_2$ ($Bebq_2$ 호스트에 RP-411을 선택 도핑한 2-파장 유기발광 다이오드)

  • Kim, Min-Young;Jang, Ji-Geun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.23-26
    • /
    • 2011
  • New organic light-emitting diodes with structure of ITO/DNTPD/TAPC/$Bebq_2/Bebq_2$:RP-411/ET-137/LiF/Al using the selective doping of 5% RP-411 in a single $Bebq_2$ host in the two wavelength(green, red) emitter formation were proposed and characterized. In the experiments, with a 300${\AA}$-thick undoped emitter of $Bebq_2$, three kinds of devices with different thicknesses of 30${\AA}$, 40${\AA}$ and 50${\AA}$ in the doped emitter of $Bebq_2$:RP-411 were fabricated. The electroluminescent spectra showed two peak emissions at the same wavelengths of 511 nm and 622 nm for the fabricated devices. When the device with a 30${\AA}$-thick doped emitter is referred as "D-1", the device with a 40${\AA}$-thick doped emitter is referred as "D-2" and the device with a 50${\AA}$-thick doped emitter is referred as "D-3", the relative intensity of 622 nm to 511 nm at two wavelength peaks was higher in the D-2 and the D-3 than in the D-1. The devices of D-1, D-2 and D-3 showed the color coordinates of (0.43, 0.46), (0.46, 0.44) and (0.48, 0.43) on the CIE chart, respectively.

Study on the OLED Thin Film Encapsulation of the Al2O3 Thin Layer Formed by Atomic Layer Deposition Method (원자층 증착방법에 의한 Al2O3 박막의 OLED Thin Film Encapsulation에 관한 연구)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.67-70
    • /
    • 2022
  • In order to prevent water vapor and oxygen permeation in the organic light emitting diodes (OLED), Al2O3 thin-film encapsulation (TFE) technology were investigated. Atomic layer deposition (ALD) method was used for making the Al2O3 TFE layer because it has superior barrier performance with advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the thickness of the Al2O3 layer was varied by controlling the numbers of the unit pulse cycle including Tri Methyl Aluminum(Al(CH3)3) injection, Ar purge, and H2O injection. In this case, several process parameters such as injection pulse times, Ar flow rate, precursor temperature, and substrate temperatures were fixed for analysis of the effect only on the thickness of the Al2O3 layer. As results, at least the thickness of 39 nm was required in order to obtain the minimum WVTR of 9.04 mg/m2day per one Al2O3 layer and a good transmittance of 90.94 % at 550 nm wavelength.

Solution-Processible Blue-Light-Emitting Polymers Based on Alkoxy-Substituted Poly(spirobifluorene)

  • Lee, Jeong-Ik;Chu, Hye-Yong;Oh, Ji-Young;Do, Lee-Mi;Lee, Hyo-Young;Zyung, Tae-Hyoung;Lee, Jae-Min;Shim, Hong-Ku
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.181-187
    • /
    • 2005
  • Alkoxy-substituted poly(spirobifluorene)s and their copolymers with a triphenylamine derivative have been synthesized by Ni(0)-mediated polymerization. The polymers were well soluble in common organic solvents. Pure blue-light emissions without the long wavelength emission of poly(fluorene)s have been observed in the fluorescence spectra of polymer thin films. The light emitting diodes with a device configuration of ITO/PEDT:PSS(30 nm)/polymer(60 nm)/LiF(1 nm)/Al(100 nm) have been fabricated. The electroluminescence spectra showed the blue emissions without the long wavelength emission as observed in the fluorescence spectra. The relatively poor electroluminescence quantum yield of the homopolymer (0.017% @ 20 $mA/cm^{2}$) with color coordinates of (0.16, 0.07) has been improved by the introduction of triphenylamine moiety, and the copolymer with derivative exhibited an electroluminescence quantum yield of 0.15 % at 20 $mA/cm^{2}$ with color coordinates of (0.16, 0.08). Moreover, the introduction of polar side chains to the spirobifluorene moiety enhanced the device performance and led to the quantum yields of 0.6 to 0.7 % at 20 $mA/cm^{2}$, although there was some expense of color purities.

  • PDF

Measurement of Step Difference using Digital Holography of ITO Thin Film Fabricated by Sputtering Method (스퍼터링 공법으로 제작한 ITO 박막의 디지털 홀로그래피를 이용한 단차에 대한 측정)

  • Jung, Hyun Il;Shin, Ju Yeop;Park, Jong Hyun;Jung, Hyunchul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.84-89
    • /
    • 2021
  • Indium tin oxide (ITO) transparent electrodes, which are used to manufacture organic light-emitting diodes, are used in light-emitting surface electrodes of display EL panels such as cell phones and TVs, liquid crystal panels, transparent switches, and plane heating elements. ITO is a major component that consists of indium and tin and is advantageous in terms of obtaining sheet resistance and light transmittance in a thin film. However, the optical performance of devices decreases with an increase in its thickness. A digital holography system was constructed and measured for the step measurement of the ITO thin film, and the reliability of the technique was verified by comparing the FE-SEM measurement results. The error rate of the step difference measurement was within ±5%. This result demonstrated that this technique is useful for applications in advanced MEMS and NEMS industrial fields.