• Title/Summary/Keyword: organic light emitting diode

Search Result 437, Processing Time 0.03 seconds

AZO 박막 위에 전기화학증착법에 의해 제작된 ZnO 나노로드의 전기 및 광학적 특성

  • Ju, Dong-Hyeok;Lee, Hui-Gwan;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.101-101
    • /
    • 2011
  • 투명전도성산화물(transparent conducting oxides, TCOs) 박막으로써 널리 쓰이는 산화인듐주석(indium tin oxide, ITO)은 전기 전도성과 광 투과성이 우수하여 주로 유기발광다이오드(organic light-emitting diode, OLED)의 전극, 발광다이오드(light-emitting diode, LED)의 current spreading 층 및 태양전지(solar cell)의 윈도우층(window layer) 등의 광전자 소자로 응용되고 있으나, 고가의 indium 가격과 인체에 유해한 독성 등이 문제점으로 지적되고 있다. 따라서 indium의 함량을 저감한 새로운 조성의 TCO 또는 indium을 함유하지 않은 친환경적인 TCO 대체 재료 개발의 필요성이 증대되고 있다. 이러한 재료 중 하나인 AZO (Al-doped zinc oxide, $Al_2O_3$: 2 wt.%)는 3.82eV의 넓은 에너지 밴드갭을 가지며, 가시광선 및 근 적외선 파장 영역에 대하여 90% 이상의 높은 투과율을 나타낸다. 또한, 습식식각이 가능하며, 매우 풍부하여 원가가 매우 저렴하고, 독성이 없다. 본 연구에서는 박막 증착율이 높고, 제작과정의 조정이 용이한 RF magnetron 스퍼터를 이용하여 glass 기판 위에 AZO 박막을 성장하고, $N_2$ 분위기에서 다양한 온도 조건에서 열처리(rapid thermal annealing, RTA)하여 전기 및 광학적 특성에 대하여 비교 분석하였다. 또한, 이후에 기존의 성장방법과 달리 고가의 진공 장비를 사용하지 않고, 저온에서도 간단한 구조의 장비를 이용하여 균일한 나노구조를 성장시킬 수 있는 전기화학증착법(electrochemical deposition)으로 AZO 박막위에 ZnO 나노로드를 다양한 성장조건에 따라 성장시켜 광학적 특성을 비교 분석하였다.

  • PDF

Application of Parylene Passivation for Top Emission Oragnic Light Emitting Diode (Top emission Organic Light Emitting Diode을 위한 Parylene 보호층의 적용)

  • Choi, Sung-Hoon;Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In;Oh, Myung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.160-163
    • /
    • 2005
  • Top emission OLED 소자의 안정성 위하여 Parylene을 보호층으로 적용하였다. 고분자화 방법을 이용하여 증착된 Parylene은 진공공정상온에서 증착가능하기 때문에 열에 의한 OLED 소자의 열화를 방지하며 높은 광투과율과 우수한 투습습성에 의하여 고효율 장수명을 OLED 소자에 적합하다. Parylene 5 ${\mu}m$ 의 광투과율은 90 %이상 측정 되었으며 투습율은 0.4849 $g/m^2day$로 측정되었다. Parylene의 보호층로서의 영향을 살펴보기 위하여, 보호층이 형성된 소자와 보호층이 형성되지 않은 소자를 제작하여 대기중에서 그 특성을 측정 비교하였다. 두 제작된 top emission OLED 소자는 최대 휘도가 1000 $cd/m^2$ 이상 측정되었으며, parylene 보호층 공정에 의한 소자의 구동 특성 변화는 나타나지 않았다. 대기중에서 초기휘도 200 $cd/m^2$로 측정된 parylene 보호층이 형성된 소자는 수명이 5 이었고, 보호층이 형성되지 않는 소자의 수명에 비하여 2배 이상 증가하였다.

  • PDF

Study on performance of unit OLED device for 3-dimensional image-process (3차원 영상구현을 위한 OLED 단위소자 특성에 대한 연구)

  • Lee, Jeong-Ho;Kim, Jae-In;O, Yeong-Hae
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.204-205
    • /
    • 2005
  • Studies on display has been requested some major changes due to the high growth of the handheld terminal market. Therefore, the self emitting OLED(Organic Light Emitting Diode) has been interested as a next generation flat plane display because of its preeminent characteristics such as quick response characteristics, higher performance viewing angle, low power consumption, and panel floating. However, a trend of the display market is moving to three dimensional image processing instead of two dimensional flat display and various researches on display using hologram makes up for the difficulty in three dimensional display using typical flat display. In this study the Lenticular Screen Printing method is presented so that it can be applicable to organic semiconductor display devices and makes possible three dimensional display using flat display for complement the drawback of inorganic semiconductor.

  • PDF

Laser Microfabrications for Next-Generation Flat Panel Display (레이저를 이용한 차세대 평판 디스플레이 공정)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

Light Emitting Diodes Based on Poly-o-toluedine (폴리톨루이딘을 이용한 발광소자 연구)

  • Park, Su Beom;Lee, Seong Ju;Kim, Yong Rok;Kim, Eun Ok
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.229-232
    • /
    • 2002
  • Poly-o-toluidine (POT) was chemically and electrochemically synthesized for the study of electronic and steric effect of methyl substituents. The turn-on voltage of organic light emitting diode (OLED) was 9~14 V. ITO/POT/Al structured OLED were fabricated with various oxidation states of POT. PL, I-V characteristics and EL spectra were investigated.

Systematic Approaches for Blue Light-emitting Polymers by Introducing Various Naphthalene Linkages into Carbazole Containing PPV Derivatives

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.258-262
    • /
    • 2013
  • Poly(2,3-naphthalenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), 2,3-PNCPV, poly(2,6-naphthalene vinylenealt- N-ethylhexyl-3,6-carbazolevinylene), 2,6-PNCPV, and poly(1,4-naphthalenevinylene-alt-N-ethylhexyl-3,6- carbazolevinylene), 1,4-PNCPV were synthesized through the Wittig polycondensation reaction. The conjugation lengths of the polymers were controlled by differently linked naphthalenes in the polymer main chain. The resulting polymers were completely soluble in common organic solvents, and exhibited good thermal stability at up to $400^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 357-374 nm and 487-538 nm, respectively. The carbazole and 2,3-linked naphthalene containing 2,3-PNCPV showed a blue PL peak at 487 nm. A single-layer light-emitting diode was fabricated with an ITO/polymer/Al configuration. The electroluminescence (EL) emission of 2,3-PNCPV was shown at 483 nm.

Low Voltage Driving White OLED with New Electron Transport Layer (New ETL 층에 의한 저전압 구동 백색 발광 OLED)

  • Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.252-256
    • /
    • 2009
  • We have developed low driving voltage white organic light emitting diode with a new electron transport material, triphenylphosphine oxide ($Ph_{3}PO$). The white light emission was realized with a rubrene yellow dopant and blue-emitting DPVBi layer. The new electron transport layer results in a very high current density at low voltage, resulting in a reduction of driving voltage. The device with a new electron transport layer shows a brightness of $1150\;cd/m^2$ at a low driving voltage of 4.3 V.

Synthesis and Luminescent Properties of Blue Light Emitting Polymers Containing a 4,4' or 3,3'-Linked Biphenyl Unit

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.317-321
    • /
    • 2012
  • Poly[4,4'(3,3')-biphenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene], 4,4'(3,3')-PBPMEH-PPV, and poly[4,4'(3,3')-biphenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene], 4,4'(3,3')-PBPCAR-PPV, of varying effective conjugation lengths, were synthesized by the well-known Wittig condensation polymerization between the appropriate biphenyl diphosphonium salts and dialdehyde monomers such as carbazole or dialkoxyphenyl dialdehyde. The conjugation lengths of the polymers were controlled by biphenyl linkages (4,4' or 3,3'). The resulting polymers were highly soluble in common organic solvents and exhibited good thermal stability up to $300^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 314-400 nm and 430-507 nm, respectively. Carbazole and 3,3'-biphenyl containing 3,3'-PBPCAR-PPV showed a blue PL peak at 430 nm. A single-layer light-emitting diode was fabricated in a configuration of ITO/polymer/Al. Electroluminescence (EL) emission of 3,3'-PBPCAR-PPV was shown at 455 nm.

Characterizations of Luminance for Varied LED Based Surface Lighting Designs (LED 면광원에서 패키지 수량에 따른 휘도변화 특성)

  • Lee, Tae-Hoon;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.70-76
    • /
    • 2016
  • Commercialization of surface lighting using Light Emitting Diodes (LED) has embraced the advance to Organic Light Emitting Diode (OLED) technology. This is necessary to achieve light-efficiency-improvement and longer component life. The range of application of LED lighting for both interior and outdoor lights has been gradually expanding. Automobiles and home appliances are now included. In the case of LED surface lighting in a domestic refrigerator, achieving high efficiency requires optimization of the number of LEDs in a pack. Optimization is also required in the design stage of development with regard to the conversion of the light source type from point light sources to the surface light type. This paper addresses these design problems. It presents a study of brightness variations for design solutions that differ from the existing technology in both the number of LED packages and use of Light Gathering Power (LGP) information. The intention is to facilitate production of high brightness LED surface lighting for domestic refrigerators.

Novel Electroluminescent Polymer Derived from Pyrene-Functionalized Polyaniline

  • Amarnath, Chellachamy Anbalagan;Kim, Hyoung-Kun;Yi, Dong-Kee;Lee, Sang-Hyup;Do, Young-Rag;Paik, Un-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1495-1499
    • /
    • 2011
  • A solution processable polymer was synthesized, by incorporating pyrene groups into the backbone of the polyaniline chain, and used as an emissive layer in an organic light emitting diode. The polyaniline base was reacted with acid chloride of pyrene butyric acid to form pyrene-functionalized polyaniline chains. The source of pyrene moiety was acid chloride of pyrene butyric acid. The formation of polymer from acid chloride of pyrene butyric acid and polyaniline was confirmed by the FTIR and $^1H$-NMR spectroscopy. Differential scanning calorimetry revealed high glass transition temperature of 210 $^{\circ}C$. Due to the presence of pyrene moieties in the backbone, the polyaniline synthesized in the present study is solution processable with light emitting property. The photoluminescence spectrum of the polymer revealed that emission lies in the blue region, with a peak at 475 nm. The light emitting device of this polymer exhibits the turn-on voltage of 15 V.