• Title/Summary/Keyword: organic fouling

Search Result 191, Processing Time 0.026 seconds

Exfoliation of abalone, Haliotis discus hannai using organic acid (유기산을 이용한 전복박리)

  • Kim, Wi-Sik;Lee, Si-Woo;Kim, Jung;Choi, Dong-Ik;Oh, Myung-Joo;Hwang, Doo-Jin
    • Journal of fish pathology
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • It is reported that abalone, Haliotis discus hannai, was detached from shelters by commercial oxytetracycline (OTC) dissolved in hydrochloric acid (HCl). In the present study, we investigated the exfoliation effect of fouling abalone by organic acids instead of OTC or HCl. Organic acids (malic acid, citric acid, lactic acid and formic acid) of pH 2.6 and pH 2.1-2.3 exfoliated over 67.6% and 91.7% of abalone, respectively; while OTC of pH 2.6 and pH 2.1-2.3 exfoliated 25.9% and over 74.1% of abalone, respectively. These results indicate that the exfoliation effect of organic acid is better than that of OTC dissolved in HCl at the same pH. However, a lower pH and longer treatment of organic acids resulted in delayed recovery of the detached abalone; abalone immersed in pH 2.3 for 10 second was recovered within 5 min, but took 12 min to recover after 30 second immersion. Moreover, recovery period for abalone exposed to pH 2.1 for 30 second was at least 15 min 45 second. In conclusion, though acids need to be cautiously handled, organic acids may be a better candidate to detach abalone instead of OTC or HCl.

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Water Back-flushing Period and Time (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 물 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Park, Sung Woo;Byun, Hongsik
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.267-277
    • /
    • 2013
  • The effect of water back-flushing period (FT) and water back-flushing time (BT) was compared with the previous study of nitrogen back-flushing in viewpoints of resistance of membrane fouling ($R_f$), permeate flux (J), and total permeate volume ($V_T$) in hybrid process of tubular ceramic microfiltration and PES (polyethersulfone) beads loaded $TiO_2$ photocatalyst for advanced drinking water treatment. As FT decreasing, Rf decreased, but J and $V_T$ increased. Turdity treatment efficiency was the maximum at NBF (no back-flushing) and increased a little as FT decreasing in both water and nitrogen back-flushing. Organic matter treatment efficiency was the maximum at FT 4 min in water back-flushing, but increased as FT decreasing in nitrogen back-flushing. As BT increasing, Rf and resistance of reversible membrane fouling ($R_{rf}$) decreased, but J and $V_T$ increased. The turdity treatment efficiency was almost constant beyond 98% in water back-flushing, but increased as BT increasing except NBF in nitrogen. The organic matter treatment efficiency was the maximum at BT 6 sec in water back-flushing, but increased as BT increasing except NBF in nitrogen. The $V_T$ was the maximum at BT 30 and FT 2 min, and optimal condition was BT 30 sec per FT 2 min in this experimental range.

Application of coagulation pretreatment for enhancing the performance of ceramic membrane filtration (세라믹 막여과의 성능향상을 위한 응집 전처리의 적용)

  • Kang, Joon-Seok;Song, Jiyoung;Park, Seogyeong;Jeong, Ahyoung;Lee, Jeong-Jun;Seo, Inseok;Chae, Seonha;Kim, Seongsu;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.501-510
    • /
    • 2017
  • In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc.. Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux $2m^3/m^2{\cdot}day$. But in Flux $5m^3/m^2{\cdot}day$, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux $10m^3/m^2{\cdot}day$, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and $UV_{254}$ showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.

Effect of Water Back-flushing Time and Polypropylene Beads in Hybrid Water Treatment Process of Photocatalyst-coated PP Beads and Alumina Microfiltration Membrane (광촉매 코팅 폴리프로필렌(PP) 비드와 알루미나 정밀여과막의 혼성 수처리 공정에서 물역세척 시간 및 PP 비드의 영향)

  • Park, Jin Yong;Kim, Sunga;Bang, Taeil
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.301-309
    • /
    • 2016
  • The effects of water back-flushing time (BT) and photocatalyst-coated polypropylene (PP) beads were investigated in hybrid water treatment process of alumina microfiltration and the PP beads in this study, and compared with the previous study with alumina ultrafiltration membrane and the same PP beads. The BT was changed in the range of 6~30 s with fixed 10 min of back-flushing period (FT). Then, the BT effects on resistance of membrane fouling ($R_f$), permeate flux (J) and total permeate volume ($V_T$) were observed during total filtration time of 180 min. As longer BT, $R_f$ decreased and J increased dramatically; however, $V_T$ was the maximum at BT 10 s. The treatment efficiency of turbidity was high beyond 99.0%, and the BT effect was not shown. The treatment efficiency of organic matters was the highest value of 89.0% at no back-flushing (NBF), and increased as longer BT. The optimum input concentration of the PP beads was 20 g/L in the viewpoint of membrane fouling; however, the optimum PP beads of the previous study was 40 g/L. The treatment efficiency of turbidity and organic matters were the maximum at 30 g/L of the PP beads; however, those of the previous study with alumina ultrafiltration membrane and the same PP beads were the highest at 40 g/L.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Multi-channels Ceramic Microfiltration and Activated Carbon Adsorption (다채널 세라믹 정밀여과 및 활성탄 흡착 혼성공정에 의한 고탁도 원수의 고도정수처리)

  • Park, Jin-Yong;Lee, Hyuk-Chan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.325-335
    • /
    • 2008
  • In this study, we used multi-channels ceramic membrane having larger permeate volume per unit time rather than tubular membrane. The hybrid process for advanced drinking water treatment was composed of granular activated carbons (GAC) packing between module inside and outside of multi-channels microfiltration membrane. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Kaolin concentration was fixed at 30mg/L and humic acid was changed as $2{\sim}10\;mg/L$ to inspect effect of organic matters. As a result, both resistance of membrane fouling ($R_f$) and permeate flux (J) were highly influenced by concentration of humic acid. Also, in result of water-back-flushing period (FT) effect, the shorter FT was the more effective to reduce membrane fouling and to enhance permeate flux because of frequent water-back-flushing. However, the optimal FT condition was 8 min when operating costs were considered. Then, the hybrid process using multi-channels ceramic membrane and GAC was applied to lake water treatment. As a result, average treatment efficiencies in our experiment using the hybrid process were 98.02% for turbidity, 75.64% for $UV_{254}$ absorbance, 7.18% for TDS and 84.73% for $COD_{Mn}$.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Organic Materials in Water-back-flushing (광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물 역세척시 유기물의 영향)

  • Park, Jin-Yong;Lee, Gwon-Seop
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.72-83
    • /
    • 2011
  • For advanced drinking water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between outside of tubular ceramic microfiltration membrane and membrane module inside. Photocatalyst was PP (polypropylene) bead coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) decreased and J increased as concentration of humic acid changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiencies of turbidity and $UV_{254}$ absorbance were above 98.5% and 85.7%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in MF, MF + $TiO_2$, and MF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were above 10.7 and 8.6%, respectively.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Water Back-flushing Period (광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물역세척 주기의 영향)

  • Park, Jin Yong;Park, Sung Woo
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.243-250
    • /
    • 2012
  • The effect of water back-flushing period (filtration time, FT) was investigated in hybrid process of alumina microfiltration and photocatalyst for advanced drinking water treatment in this study, and compared with the previous studies with carbon microfiltration or alumina ultrafiltration membranes. The FT was changed in the range of 2~10 min with fixed 10 sec of BT. Then, the FT effects on resistance of membrane fouling ($R_f$), permeate flux (J) and total permeate volume ($V_T$) were observed during total filtration time of 180 min. As decreasing FT, $R_f$ decreased and J increased as decreasing FT, which was same with the previous results with carbon microfiltration or alumina ultrafiltration membranes. The treatment efficiency of turbidity was high beyond 98.1%, and the effect of FT was not shown on treatment efficiency of turbidity, which was same with the previous result of carbon microfiltration. The treatment efficiency of organic matters was the highest value of 89.6 % at FT 8 min, which was a little higher than those of the previous results, and the effect of FT was not shown on treatment efficiency of organic matters.

Power density and fouling propensity of pretreatments in SWRO/PRO hybrid system (전처리기술별 전력밀도 및 파울링에 관한 연구)

  • Koo, Jae-Wuk;Nam, Sookhyun;Sim, Jinwoo;Kim, Eunju;Choi, Yongjun;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.755-764
    • /
    • 2016
  • Pressure retarded osmosis (PRO) processes can be implemented on a number of water types, using different technologies and achieving various power outcomes. In this study, Sewage facility effluent was used for feed solution of PRO and synthetic NaCl water for draw solution. This study was conducted to investigate effect of water quality of pretreatment on power density and flux decline in PRO process. The results show that organic and particulate foulants have to be removed for more stable operation. Flourescence technique with EEM enables to investigate the chemical properties of aquatic organic matter by extracting spectral information. Humic/fulvic matters and soluble microbial by-products were analyzed as the most affecting factors on the PRO performance. As a result of analyzing the whole system based on the energy consumption of the unit process, specific energy consumption(SEC) of the applicable technology for PRO pre-treatment should be about $0.2kWh/m^3$ or less.

Valuable Organic Liquid Fertilizer Manufacturing through $TAO^{TM}$ Process for Swine Manure Treatment

  • Lee, Myung-Gyu;Cha, Gi-Cheol
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 2003
  • $TAO^{TM}$ System is an auto-heated thermophilic aerated digestion process using a proprietary microbe called as a Phototropic Bacteria (PTB). High metabolic activity results in heat generation, which enables to produce a pathogen-free and digested liquid fertilizer at short retention times. TAO$^{TM}$ system has been developed to reduce a manure volume and convert into the liquid fertilizer using swine manure since 1992. About 100 units have been installed and operated in Korean swine farms so far. TAO$^{TM}$ system consists of a reactor vessel and ejector-type aeration pumps and foam removers. The swine slurry manure enters into vessel with PTB and is mixed and aerated. The process is operated at detention times from 2 to 4 days and temperature of 55 to $65^{\circ}C$. Foams are occurred and broken down by foam removers to evaporate water contents. Generally, at least 30% of water content is evaporated, 99% of volatile fatty acids caused an odor are removed and pathogen destruction is excellent with fecal coliform, rotavirus and salmonella below detection limits. The effluent from TAO$^{TM}$ system, called as the "TAO EFFLUX", is screened and has superb properties as a fertilizer. Normally N-P-K contents of screened TAO Efflux are 4.7 g/L, 0.375 g/L and 2.8 g/L respectively. The fertilizer effect of TAO EFFLUX compared to chemical fertilizer has been demonstrated and studied with various crops such as rice, potato, cabbage, pumpkin, green pepper, parsley, cucumber and apple. Generally it has better fertilizer effects and excellent soil fertility improvement effects. Moreover, the TAO EFFLUX is concentrated through membrane technology without fouling problems for a cost saving of long distance transportation and a commercialization (crop nutrient commodity) to a gardening market, for example.

  • PDF

A Review on Zeolite-based Ceramic Membrane for Oil/Water Separation (기름/물 분리를 위한 제올라이트 기반의 세라믹 분리막에 대한 총설)

  • Lee, Joo Yeop;Rajkumar, Patel;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.83-90
    • /
    • 2022
  • Wastewater from refineries and petroleum plant lead to severe environmental pollution. There are various existing processes applied for oily water treatment, but membrane-based technology is one of the most efficient methods. Polymeric membranes prepared from organic materials for the separation of oil in water often face chronic problem of membrane fouling. Inorganic membranes are considered to be more efficient due to longer lifetime than organic membranes. Zeolite membranes have better chemical stability and long-term recyclability. The presence of hydrophilicity enhances the water flux of membrane. Ceramic membranes prepared from zeolites are another efficient class of inorganic membranes applied for oil water separation. This review is focused on oily wastewater separation based on zeolite membrane which classified into two categories, i) neat zeolite and ii) zeolite composites with other materials.