• Title/Summary/Keyword: organic fouling

Search Result 191, Processing Time 0.029 seconds

Useful and Effective Diagnosis and Evaluation Tools for Eenvironmental Change in Increased Mill Water System Closure

  • Linda R. Robertson;Lee, Byung-Tae;Kim, Tae-Joon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.5
    • /
    • pp.1-11
    • /
    • 2001
  • In the past, abundant and clean water was available for paper mills'use. However, the growth of population and industry made water less available nowadays. Also, environmental regulation limits wastewater discharge, which affects mill operation cost. Therefore, paper mills are under pressure to use more recycled water and mill system closure. As a result, chemical and physical parameters of water are changing and new environment if being created for microorganisms in paper mill system as well. The more soluble or suspended organic materials are increased as more water is recycled and less or scarce dissolved oxygen is available, depending on the degree of recycled water usage. Microorganism flora ill paper mill system will be a1so shifted according to the environmental change of mill system. Anaerobic bacteria, including sulfate reducing bacteria (SRB), will be dominant in the system as very low or almost no oxygen available in the system. Nevertheless, it is common in domestic paper mills that employ the same and old biocides as a means of microbial control, and microbiological control is often less recognized or even neglected. The right biocide selection for increased reductive environment of mills is critical for operation and estimated loss from paper quality defects such as sheet break, holes due to microbiological cause is tremendous compared to the microbiological control cost. It is imperative to investigate and diagnosis the environmental change of mills for right control of cumbersome microorganisms. Several useful diagnosis tools, including new technology employing OFM(Optical Fouling Monitor) in situ, are illustrated.

  • PDF

The Estimating an Effect of Rapid Flux Increase to a Membrane in the Intermittent Aeration MBR Process Using Alum Treatment (응집제를 활용한 간헐포기 MBR공정에서 순간플럭스 증가가 분리막에 미치는 영향 평가)

  • Choi Song-Hyu;Cho Nam-un;Han Myong Su
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.70-83
    • /
    • 2005
  • By supplying air intermittently in various mode, the effects of oxic/anoxic time ratio and air scrubbing in aeration condition on the membrane flux and permeability were investigated. When suction pump stops, vacuum pressure remains inside the suction pump. Therefore, the effect of remaining vacuum pressure in the suction pump on fouling of membrane was investigated. The effect of EPS (Extra cellular Polymeric Substance) which is generated due to the long SRT and high concentration of MLSS and the dose of coagulant on the membrane were also investigated. The suitable oxic/anoxic time ratio for the best removal efficiency of organic matter and nitrogenous matter was 40 minutes (Oxic) : 20 minutes (Anoxic). At this time ratio, alum was dosed into the aeration tank. The result of dosing alum was that the concentration of alum solution might affect nitrification and denitrification. To remove 1 mg/L of phosphorus in MBR process, it needs 0.75 mg/L of alum solution.

Preparation and application of silica-based coatings for corrosion protection of marine structures (해양구조물용 silica 기반 내해수성 코팅제의 제조 및 응용)

  • Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In this study, the development of the room temperature curable silica-based coating compositions for anticorrosive and antifouling performance in marine environments was carried out. The marine (plant) structures with many exposed parts are operated in harsh marine environments such as strong ultraviolet rays, extreme temperature differences and salt water corrosion. Organic paints that are easily degraded under these environments and easily eroded by physical stimuli such as waves can not play a role properly. Dense ceramic coatings on marine structures provide careful protections even in saltwater environments due to their high hardness and rust resistance. Therefore, in the case of ceramic coatings, their use and application range in marine structures can be greatly improved due to their functional advantages. In the present study, silica-based coating compositions based on colloidal silica with silane coupling agents, curing salts, and ceramic fillers were developed, and their applications as protective coatings for corrosion protection and fouling prevention in seawater were also studied.

Study on Feasibility of Fluidized Bed Membrane Reactor with Granular Activated Carbon Particles as Fluidized Media to Treat Metal-plating Wastewater (도금폐수처리를 위한 입상활성탄 유동 메디아 적용 유동상 멤브레인 여과기술의 적용가능성 평가에 관한 연구)

  • Chang, Soomin;Kwon, Deaeun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.252-259
    • /
    • 2018
  • An acidic, real metal-plating wastewater was treated by a fluidized bed membrane reactor introduced with granular activated carbon (GAC) as fluidized media. With GAC fluidization, there was no increase in suction pressure with time at each flux set-point applied. At neutral solution pH, much less fouling rate was observed than acidic pH under GAC fluidization. Higher solution pH resulted in the increase in particle size in metal-finishing wastewater, thus producing a less dense cake structure on membrane. More than 95% of chemical oxygen demand was observed from the fluidized bed membrane reactor under GAC fluidization. Total suspended solid concentration in membrane permeate was near zero. At the raw wastewater pH, no removal of copper and chromium by the fluidized bed membrane reactor was observed. As the pH was increased to 7.0, removal efficiency of copper and chromium was increased considerably to 99 and 94%, respectively. Regardless of solution pH tested, more than 95% of cyanide was removed possibly due to the strong adsorption of organic-cyanide complex on GAC in fluidized bed membrane reactor.

Clarification of Korean Tangerine Juice Using Microfiltration Membrane Process (미세여과 공정을 이용한 제주산 감귤 주스의 청징화)

  • Lee, Eun-Young;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.448-457
    • /
    • 1999
  • Citrus fruits are consumed worldwide due to their unique flavor and nutrition value. It is necessary to remove the haze material as well as to minimize the loss of major compounds such as organic acids, sugars, and ascorbic acid in membrane processes for clarification of juice. The objective of our research was to select the best membrane among one surface filter (Whatman No.4) and five microfiltration filters (GF/A, GF/D, GF/F, Gelman, and SM). Tangerine fresh blended with three times of water was partially clarified with 170 mesh followed by prefiltration in a Samduck filtration system. The best membrane was selected by measuring the amounts of major compounds in the permeates as well as the flux which were statistically analyzed with SAS program. The foulants on the membrane surface were observed by SEM. The flux of GF/A and GF/F decreased with time at probability 0.10. Gelman, SM, and GF/D maintained the stable flux. Gelman showed the highest total scores including nutritive value (the amounts of citrate, malate, and ascorbic acid) and purchasing need (brix and color). Therefore, the microfiltration membrane process was a very effective method in tangerine juice clarification and Gelman type A/E was proved to be the best membrane among the five microfiltration membranes.

  • PDF

Effect of pH, Saturated Oxygen, and Back-flushing Media in Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst-loaded PES Beads (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성수처리에서 pH 및 포화산소, 역세척 매체의 영향)

  • Hong, Sung Taek;Park, Jin Yong
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.123-135
    • /
    • 2014
  • The effects of pH, saturated oxygen, and back-flushing media were investigated in hybrid process of tubular ceramic microfiltration and $TiO_2$ photocatalyst-loaded PES (polyethersulfone) beads for advanced drinking water treatment, and compared results of water, nitrogen, or oxygen back-flushing in the viewpoints of membrane fouling resistance ($R_f$), permeate flux (J) and total treated water ($V_T$). $R_f$ decreased, and J and $V_T$ increased as decreasing pH. Turbidity treatment efficiencies were similar at water or nitrogen back-flushing independent of pH, but DOM (dissolved organic matter) treatment efficiency did not have a trend at water back-flushing. $R_f$ at NBF (no back-flushing) with SO (saturated oxygen) was the lower than that at NBF without SO. Also, the DOM treatment efficiency at NBF with SO was the lower than that at NBF without SO. It happened because OH radicals produced by reaction of SO and photocatalyst could dilute with water inside the module. The DOM treatment efficiency of gas back-flushing showed the larger than that of water back-flushing at back-flushig period 10 min. It proved that the adsorption or photo-oxidation of PES beads could be activated by the more effective bead-cleaning of gas back-flushing than water back-flushing.

Hybrid Water Treatment of Tubular Alumina MF and Polypropylene Beads Coated with Photocatalyst: Effect of Nitrogen Back-flushing Period and Time (관형 알루미나 정밀여과와 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 질소 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Choi, Min Jee;Ma, Jun Gyu
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.226-236
    • /
    • 2013
  • The effect of $N_2$ back-flushing period (FT) and time (BT) was compared with the previous result used PES (polyethersulfone) beads loaded with titanium dioxide photocatalyst in hybrid process of alumina microfiltration and PP (polypropylene) beads coated with photocatalyst in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). The reason of nitrogen back-washing instead of the general air back-washing method is to minimize the possible effect of oxygen included in air on water quality analysis. As decreasing FT, $R_f$ decreased and J and $V_T$ increased. Treatment efficiency of dissolved organic matters (DOM) was 82.0%, which was the higher than 78.0% of the PES beads result. This means that PP beads coated with photocatalyst was the more effective than PES beads loaded with photo-catalyst in the DOM removal. As increasing BT, the final $R_f$ decreased and the final J increased, but $V_T$ was the maximum at BT 15 sec. The average treatment efficiency of turbidity did not have any trend as changing BT. As BT increasing from 6 sec to 30 sec, the treatment efficiency of DOM increased 11.8%, which was a little higher than the result of PES beads.

Effect of pH and Oxygen Back-flushing on Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads (관형 세라믹 정밀여과와 광촉매 첨가 PES 구를 이용한 혼성 수처리 공정에서 pH 및 산소 역세척의 영향)

  • Park, Jin Yong;Park, Sung Woo;Byun, Hongsik
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.39-49
    • /
    • 2014
  • The effects of pH and oxygen back-flushing were investigated in hybrid process of ceramic microfiltration and PES (polyethersulfone) beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As increasing pH, $R_f$ decreased and J increased. Finally the maximum $V_T$ could be acquired at pH 9. Treatment efficiencies of turbidity was almost same independent of pH. Treatment efficiency of dissolved organic matters (DOM) decreased as increasing pH. As results of comparing the oxygen and nitrogen back-flushing, $R_{f,180}$ at oxygen back-flushing was the lower than that at nitrogen back-flushing, and the dimensionless final permeate flux ($J_{180}/J_0$) by initial permeate flux ($J_0$) at oxygen back-flushing was maintained the higher than that at nitrogen back-flushing except 10 and 12 min of back-flushing period (FT). Treatment efficiency of turbidity at oxygen back-flushing was a little higher than that at nitrogen back-flushing. Treatment efficiency of the DOM at nitrogen back-flushing was the higher than that at oxygen back-flushing. Also, treatment efficiency of turbidity at saturated oxygen was similar with those of oxygen and nitrogen back-flushing, but the treatment efficiency of DOM was increased significantly because OH radical could be generated by reaction between saturated oxygen and photocatalyst.

Oxidative Coupling Reaction of Purified Aldrich Humic Acid by Horseradish Peroxidase (산화환원효소에 의한 휴믹산의 산화중합반응)

  • Jee, Sang-Hyun;Kim, Do-Gun;Kim, Jeong-Hyun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1054-1062
    • /
    • 2010
  • Oxidative coupling reactions of humic substances (HS) can be catalyzed by a variety of natural extracellular enzymes and metal oxides. In this study, property changes of HS induced by a natural enzyme, horseradish peroxidase (HRP), and the effect of it to microfiltration (MF) were investigated. PAHA was transformed by oxidative coupling reaction with HRP and hydrogen peroxide ($H_2O_2$), verifying the catalytic effects of the HRP. Size exclusion chromatography (SEC) revealed that weight-average molecular weight (MWw) of PAHA was proportionally increased with the dosages of HRP and $H_2O_2$, indicating the transform action of HS into larger and complex molecules. An increase in the conformational stability of HS was achieved through the promotion of intermolecular covalent bondings between heterogeneous humic molecules. Spectroscopic analysis (fluorescence and infrared spectroscopy) proved that functional groups were transformed by the reaction. Additionally, HS and transformed products were undergone microfiltration (MF) to examine the treatment potential of them in a water treatment facility. Original HS could not be removed by MF but larger molecules of transformed products could be removed. Meanwhile, transformed products caused more fouling on the filtration than original HS. This results proved that natural organic matter (NOM) can be removed by MF after its increase in molecular size by oxidative coupling reaction.

Impact Analysis of Water Blending to Reverse Osmosis Desalination Process (원수 블렌딩이 해수담수화 역삼투 공정 성능에 미치는 영향)

  • Kim, Jihye;Park, Hyung Jin;Lee, Kyung-Hyuk;Kwon, Boungsu;Kwon, Soonbuhm;Lim, Jae-Lim
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.190-199
    • /
    • 2020
  • The utilization of multiple water sources becomes important due to the master plan for development of water supply released by Ministry of Environment, Korea in 2018. In this study, therefore, the analysis of comprehensive effect in blending applicable water sources in Daesan where 100,000 ㎥/d seawater desalination plant will be constructed for industrial use was performed. The increase in mixing ratio of other water sources with seawater reduced salinity up to 50%, but negatively impacted the turbid and organic matter. Lab-scale reverse osmosis performance test also found that membrane fouling was exacerbated in blended water condition. The simulation results of reverse osmosis indicated 39% energy saving on average is expected at the one-to-one blending ratio, however, long-term performance test at the pilot-scale plant is highly required to evaluate the inclusive impact of mixing seawater and other water sources.