• Title/Summary/Keyword: organic fertilizer.

Search Result 1,515, Processing Time 0.031 seconds

Characterization and Classification of Potential Acid Sulfate Soils on Flood-plains (하해혼성(河海混成) 잠재특이산성토양(潛在特異酸性土壤)의 분포(分布)와 분류(分類))

  • Jung, Yeun-Tae;No, Yeong-Pal;Baeg, Cheong-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.173-179
    • /
    • 1989
  • Characterization and classification of the potential acid sulfate soils found on flood-plains in Yeongnam area were summarized as follows: 1. The "Potential acid sulfate soil" layer(s) were appeared in the around 2-4m substrata of soil profiles and characterized by the fine texture, high reduction and physical unripened soft mud deposits or having higher contents of organic matter with dark color. 2. The contents of total sulfur (T-S) in those soils were ranged around 0.45-0.9% and the materials exhibited a strong acidity upon the oxidation with $H_2O_2$. Although the T-S contents was low as much as 0.15%, the sulfidic materials were also acidified strongly by the oxidation with $H_2O_2$ in the condition of lower content of carbonates. As defined in Soil Taxonomy of USDA, most of the sulfidic materials contained less than 3 times carbonate ($CaCO_3$ equivalent wt. %), but there were some which abundant in shell fragments, contained more than 3 times carbonate by weight percentage and that not much acidified by the oxidation with $H_2O_2$. 3. The contents of T-S correlated negatively with the pH oxidized by $H_2O_2$ and with the fizzing time (minutes) due to addition of $H_2O_2$. 4. The potential acid sulfate soils could be defined as soil materials that had sulfidic layer(s) more than 20cm thick within 4m of the soil profile and contained more than 0.15% of T-S with less than 3 times carbonate ($CaCO_3$ equiv. %). A tentative interpretative soil classification system was proposed, i.e., "Weak potential acid sulfate (T-S, 0.15-0.5%)", "Moderate potential acid sulfate (T-S, 0.5-0.75%)", and "Strong potential acid sulfate (T-S, more than 0.75%)". Finally, it was proposed that the "Detailed soil survey with high intensity" should be carried out in the areas of agricultural engineering works such as arableland readjustment works, in advance.

  • PDF

Evaluation of Treatment Efficencies of Pollutants in Juksancheon Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 죽산천 인공습지의 오염물질 정화효율 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Seo, Young-Jin;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.642-648
    • /
    • 2012
  • To evaluate the water quality in Juksancheon constructed wetlands for treating non-point source pollution, the removal rates of nutrients in water and the total amounts of T-N and T-P uptakes by water plants were investigated. Chemical characteristics of T-N and T-P in sediment were investigated. The concentrations of BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), SS (Suspended Solids), T-N and T-P in inflow were 0.07~1.47, 0.60~2.65, 0.50~4.60, 1.38~6.26 and $0.08{\sim}0.32mg\;L^{-1}$, respectively. The removal rates of BOD, COD, SS, T-N, and T-P were -10, 51, 66, -3 and 5%, respectively. The maximum amount of T-N uptake by water plants in August was $368.7mg\;plant^{-1}$ in the $2^{nd}$ treatment stage by Nymphoides peltata, $1314.6mg\;plant^{-1}$ in the $3^{rd}$ treatment stage by Iris pseudacorus, $1160.4mg\;plant^{-1}$ in the $4^{th}$ treatment stage by Nymphaea tetragona GEORGI, respectively. The maximum amount of T-P uptake by water plants in August was $121.7mg\;plant^{-1}$ by Nymphoides peltata in the $2^{nd}$ treatment stage, $268.7mg\;plant^{-1}$ by Iris pseudacorus in the $3^{rd}$ treatment stage and $212.0mg\;plant^{-1}$ by Nymphaea tetragona GEORGI in the $4^{th}$ treatment stage, respectively. Organic matter contents in sediments were not different. Contents of T-N and T-P in sediments were higher in spring. Microbial biomass C:N:P ratios in sediments in spring, summer, autumn and winter were 117~140:1~4:1, 86~126:5~6:1, 68~101:2~6:1 and 47~138:2~4:1, respectively. We could conclude that Juksancheon constructed wetlands show high removal efficiencies of COD and SS. However, improvements of management in winter season should be considered to improve the removal efficiencies of pollutants.

Effect of Substrate to Inoculum Ratio on Biochemical Methane Potential in the Thermal Pretreatment of Piggery Sludge (양돈분뇨의 열전처리에서 기질과 접종액의 비율이 메탄생산 퍼텐셜에 미치는 영향)

  • Kim, Seung-Hwan;Kim, Ho;Oh, Seong-Yong;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.532-539
    • /
    • 2012
  • This study was carried out to investigate the effect of substrate to inoculum ratio on ultimate methane potential ($B_u$) from piggery wastes. BMP(Biochemical methane potential) assays were executed for the three samples that have different organic characteristics (Filtrate of pig slurry, LF; Thermal hydrolysate of piggery sludge cake, TH; Mixture of LF and TH at the ratio of 4 to 1, Mix), and $B_u$ values obtained from BMP assays were compared with the theoretical methane potential ($B_{th}$) of each samples. While $B_u$ values (0.27, 0.44, and $0.46Nm^3\;Kg^{-1}-VS_{added}$) of TH sample that was pretreated with thermal hydrolysis were below the $B_{th}$ at all S/I ratios (0.1, 0.3, and 0.5), and $B_u$ values of LF (0.64 and $0.53Nm^3\;Kg^{-1}-VS_{added}$ for the S/I ratios of 0.1 and 0.3, respectively) at the lower S/I ratios of 0.1 and 0.3 exceeded the $B_{th}$ values ($0.418Nm^3\;Kg^{-1}-VS_{added}$). And also biodegradability ($B_u/B_{th}$) of LF sample were obtained as 152.07%, 122.67%, and 95.71% at the S/I ratios of 0.1, 0.3, and 0.5, respectively, and unreasonable $B_u/B_{th}$ values were presented at lower S/I ratios of 0.1 and 0.3. $B_u$ and $B_u/B_{th}$ of Mix sample showed a similar tendency with those of LF sample. Therefore, TH sample by thermal hydrolysis pretreatment showed lower anaerobic biodegradability than those of other samples (LF and Mix) and ultimate methane potentials of LF and Mix samples were overestimated in the lower S/I ratio of 0.1 and 0.3.

A Study on a New Working-system of Mechanical Land Clearing and Development of Fertle Soil. (기계개간의 새로운 작업체계와 숙지화 촉진에 관한 연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2162-2176
    • /
    • 1971
  • From the ancient times our forefathers settled down in this peninsular and cultivated the hills and waste-lands into fields. Instead of fertilizing the lands they moved to find other fertile lands and lived a feudal life of agriculture and various machines played a main role in the land reclamation. The best method of land clearing, the time and efficiency in the operation and the effect of growing crops should sysematically analized prior to the time of 3rd Five-year Economic Development(1972-1976) in order to cultivated 210,000 ha of waste-land or the modernization of our country. The present study was investigated to find out a new working-system of mechanical land clearing and development of fertile soil. The results are as follows: 1) The land reclamation in natural slope is much more encourageable in land clearing and farming when the slope is below ten grades than bench terrace. 2) Weeds were mixed with soil in the land clearing work in order to supply organic materials and to make soil swollen instead of burning of just removing. 3) The equipments such as bulldozers, harrows, power tillers and so on should be prepared in order to do a systematic work in the land clearing. 4) The work of pulling-up roots is dependent upon the forms of roots spreading under the ground. The work of the pulling-up the straight roots was most difficult. 5) The land clearing work of the wrinkled style blocks was easy in pulling up roots and in the time of first plowing. The harrowing work could also be simply done. 6) The amount of soil carried was $240m^3/10a$, 15.6% increased amount from the standard block, while the required time of clearing work was 2 hours 15 minutes 45 seconds/10a, the one third of time required for the standard block. 7) The time disc harrowing work increased 50%, or 15 minutes/10a compared to the harrowing work required in the cultivated soil. 8) The time of rotary tilling increased 2.4 times or 1 hour 47 minutes 43 seconds/10a compared to the time required in the cultivated soil. 9) The reclamed land should be fertilized according to the soil quality, especially added fertilizer should be more than 1,200kg/10a, limes 20kg/10a. In order to produce added fertilizer grass fields should be needed. 10) The experiment of pasture growing is now progressing and therefore the effect of land clearing and the degree of developed soil will be investigated before long.

  • PDF

Influence of Lime and Phosphate Application on Amide and Ureide Nitrogen of Soybean Plants and Soil Microorganisms (석회(石灰)와 인산시용(燐酸施用)이 대두식물체중(大豆植物體中) Amide태(態) 및 Ureide태(態) 질소(窒素)와 토양미생물상(土壤微生物相)의 변화(變化)에 미치는 영향(影響))

  • Ko, Jae-Young;Ryu, In-Soo;Lee, Sang-Kyu;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.69-76
    • /
    • 1991
  • A pot experiment was conducted to find out the effects of lime and phosphate application on the changes of number of soil microorganisms, indigenous Rhizobium japonicum, nodule formation, and ureide-and amide-N in leaf and stem exudate of soybean plant under uncultivated hillside red earth in very low pH value, organic matter, available phosphate, and cation exchange capacity. The results obtained were summarized as follows : 1. The plant height, stem length, root dry weight and nodule weight were significantly increased with the application of lime and phosphate application than that of control plot. 2. The concentration of amide-N in soybean plant at the 45 days after sowing was obtained as high in order of control>lime> lime+phosphate while the concentration was obtained in order of Iime+phosphate>lime> control at flowering stage 3. However, concentration of ureide-N in the soybean leaf at the 45 days after sowing was obtained as high in order of control>lime>lime+hosphate while reversed concentration was obtained in stem. 4. The number of soil microorgan isms were increased with increase of pH value, available phosphate and soil exchangeable cation. 5. Significantly negative high correlation were obtained with the concentration of Al, Fe in soil and the concentration of amide-and ureide-N in soybean plant at flowering stage while positive correlation was obtained with plant growth and the concentration of ureide-N.

  • PDF

Effect of Crop Rotation on the Growth of Sesame(Sesamum indicum L.) and Soil Properties (윤작이 참깨의 생육과 토양의 이화학성에 미치는 영향)

  • Kim, Dong-Hwi;Seo, Jong-Ho;Kim, Chung-Guk;Choi, Seong-Ho;Ko, Mun-Hwan;Heo, Il-Bong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.216-224
    • /
    • 1998
  • The objective of this study was to investigate the effect of sesame monoculture and sesame in rotation (SR) with maize. soybean. barley or rye on reduction of injury by continous cropping in sesame. Field studies were conducted for 3-years (1995~1997) at the experimental field of the Crop Experiment Station. Compared to CS (continuous sesame). SR treatments turned out to keep more organic matter and higher exchangeable cation concentrations in soils. BS (barley and sesame in a 1-year rotation) and RS (rye and sesame in a 1-yea r rotation) treatments had significantly greater available $P_2O_5$ contents in soils than CS, MS (maize and sesame in a 3-year rotation) and SbS (soybean a nd sesame in a 3-year rotation). The pH of the soils under different treatments were not significantly different. SR treatments exhibited significantly lower bulk density and higher pore space than CS. Soil microbial biomass C (SMBC) and N (SMBN) were determined by the chloroform fumigation-extraction method. SMBC and SMBN were significantly higher in soils under BS and RS than those under CS, but only during the 1 year of monitoring. MS and SbS treatments resulted in higher SMBC and SMBN than CS. The occurrence of injury by disease of sesame is the important primary factor of injury by continous cropping, but the disease occurrence with rotation did not decrease in th is experiment. Under CS treatment, the growth and grain of sesame was significantly lower than those under other treatments. Compared to CS, the increments of grain yield of sesame were 68, 63, 57 and 51% for MS, RS, SbS and BS, respectively in the first harvest. In the second harvest, they were 24% for MS, 28% for RS, 20% for SbS and 19% for BS. The average increase ratios during the two years were 41, 41, 34, and 33% for MS, RS, SbS and BS, respectively.

  • PDF

Relationship among Chemical Properties of Soils with Different Texture Taken from Plastic Film House of Chungbuk Area (충북지역 시설재배지 토성별 토양화학성의 상호관계)

  • Kim, Jai-Joung;Kang, Seong-Soo;Kim, Ki-In;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.144-150
    • /
    • 2006
  • Chemical characteristics and their interrelationships of 156 soils included by 74 sandy loam and 82 loam soils collected from plastic film house in Chungbuk area were investigated from 1998 to 2001. Seventeen chemical properties including pH, organic matter (OM), electrical conductivity (EC), inorganic nitrogen, available phosphorus, exchangeable cations, CEC, etc., were analyzed by correlation, standardized partial regression coefficient, and principal factor analysis. Standardized partial regression coefficients of chemical properties were estimated to determine the degree of contribution of EC and OM contents in soils. Principal factor analysis was applied to classify the studied chemical properties into different groups having similar chemical properties. The pH of experimental soils ranged from 4.24 to 7.14 and 4.95 to 7.35 for loam and sandy loam soils, respectively. The EC of soils varied from 0.93 to $15.65dS\;m^{-1}$ for loam and $0.91{\sim}22.30dS\;m^{-1}$ for sandy loam soils, respectively with significant differences among them. The EC measured by 1:5 $H_2O$ dilution method and saturation method were significantly related with 8.163 and 8.599 as the slopes of regression equation for loam and sandy loam soils, respectively. These slopes more than 8.0 in this regression equation was higher than the slope of 5.0 that is estimated from dilution coefficient suggesting that EC measured by 1:5 dilution method might be erratic. The standardized partial regression coefficient of different chemical properties for the estimation of EC was in the order of $NO_3{^-}$ > $Cl^-$ > OM > exchangeable Mg for loam soils and $NO_3{^-}$ > exchangeable Mg > $Cl^-$ for sandy loam soils. Contribution order of the chemical properties based on standardized partial regression coefficient differed 1:5 dilution method and saturation method, indicating that different chemical compounds might be present in the extract solutions of these two methods. Consequently the measurement of EC by saturation method was thought be still better for estimation of chemical property because accuracy of EC measurement by 1:5 dilution method can't be improved by any specific coefficient for adjustment of EC. Regardless of differences in soil textures and extraction methods, correlation coefficients between EC and the other chemical properties were routinely in the order of $NO_3{^-}$ > $Cl^-$ > degree of base saturation > exchangeable Mg > exchangeable Ca > $SO{_4}^{2-}$. The principal factor analysis revealed four factor groups of the chemical properties studied. The groups for sandy loam were as follows; ; 1. salt components, 2. soil reaction components, 3. fixed and adsorption components, 4. CEC components. The groupings of loam soils were similar to sandy loam except that exchangeable Na substituted the CEC of sandy loam.

The Effect of Dicyandiamide (DCD) on the Mineralization of Nitrogen from Soild-Animalwaste (Dicyandiamide(DCD)가 고형(固形) 축산폐기물 중(中) 무기화(無機化)된 질소(窒素)의 경시적(經時的) 방출(放出) 및 억제(抑制)에 미치는 영향(影響))

  • Yun, Sun-Gang;Woo, Ki-Dae;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.43-48
    • /
    • 1993
  • A laboratory study was cunducted to obtain fundamental informations on environmental-conservative treatment technique of soiled animalwaste. The release rate of inorganic nitrogen which mineralized from solid pigwaste and the effect of nitrification inhibitor(Dicyandiamide, DCD) on nitrate concentration of fresh or fermented pigwaste were weekly checked for ten weeks under incubation condition. Average pH of soild pigwaste was maintained over 8 unit during all incubation periods with no difference by nitrification inhibitor addition and the pHs of fresh- or fermented pigwaste without DCD were elevated by passing time 0.04, 0.058 pH unit/week (P<0.05) during incubation. While $NH_4-N$ concentration of fermented pigwaste until two week was nearly the same as it before incubation, $NH_4-N$ concentration of fresh pigwaste was remarkably increased upto 3,732 ppm for 1 week after incubation and the portion of increased $NH_4-N$ concentration, 2,473 ppm was 20.1% of indigenous organic nitrogen of fresh pigwaste. By the passing incubation time, $NH_4-N$ concentration began to lower linearly at not only fresh- but fermented pigwaste after 1 or 2 week, respectively and the $NH_4-N$ concentration loss rate at fresh pigwaste was 61.8 ppm/week with DCD addition and 72.3ppm/week with no DCD. There was positive relationship between $NO_3-N$ concentrations of fresh pigwaste by the addition of DCD or not and $NO_3-N$ concentraion was significantly lowered with DCD treatment($r=0.79^{**}$).

  • PDF

Application of Principle in Metal-Ligand Complexation to Remove Heavy Metals : Effects of Metal Concentration, pH and Temperature (금속(金屬)-Ligand 착염형성(錯鹽形成)에 의한 중금속(重金屬) 제거방법(除去方法)에 관(關)한 연구(硏究) : 중금속(重金屬) 농도(濃度), pH 및 온도(溫度)의 효과(效果))

  • Yang, Jae-E;Shin, Yong-Keon;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.37-42
    • /
    • 1993
  • Influences of metal concentration, pH and temperature on metal-ligand precipitate formation were investigated, as a part of projects for removing heavy metals from aqueous solution employing the principles in metal-ligand complexation. Aqueous solutions of HA or FA were reacted with those of heavy metals with 1:1 ratio. Efficiency of humic (HA) or fulvic acid (FA) on removing metals was evaluated by separating the precipitates from soltuions with the filtering method. When HA was a counter ligand, there existed three ranges of metal concentrations affecting precipitation : precipitate fromation was not available, was reached to the maximum, and afterwards was decreased again. The concentration ratios of metal to HA for initiating complexation were dependent upon kinds of metal and concentrations of ligand. Amount of Pb to form maximum precipitates per unit mg of HA was 1.3 times higher than that of Cu. When FA was a counter ligand, concentrations of metal-FA precipitates were increased proportionally with the treated metal concentrations. Efficiency of FA fro removing Pb was nearly 100%, but it was ranged from 12 to 19% for Cu, depending on FA concentration. pH exerted a considerable effect on complexation between Pb and FA, showing precipitates were increased six times at most per unit increase of pH. Ranges of pH increasing significantly the mounts of precipitates were coincied with pH jump ranges of the titration curve of organic ligands. As increasing temperature from 15 to $55^{\circ}C$, increases of FA-Cu precipitates were doubled, but those of FA-Pb were accounted for only 6%, However, HA-metal complexation was not affected by temperature.

  • PDF

Effect of Fly ash Application on the Yield of Rice and Silicate Availability in Paddy Soil (Fly ash 시용(施用)이 수도(水稻)의 수량(收量)과 논 토양(土壤)의 유효규산(有效珪酸) 함량(含量)에 미치는 영향(影響))

  • Kim, Yong-Woong;Yun, Chong-Hee;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.4
    • /
    • pp.275-283
    • /
    • 1994
  • The effects of anthracite and bituminous fly ash application on rice yield were investigated and the available silicate in paddy soil with ash application was analyzed. The obtained results are as follow : The yield of rice gradually decreased as the amount of anthracite ash increased. On the contrary, the rice yield gradually increased as the amount of bituminous ash increased. At harvesting stage the chemical properties in soil such as pH, organic content, and inorganic content($P_2O_5$, K. Ca, Mg and available $SiO_2$) were higher in bituminous ash treated soil than in anthracite treated soil. The amount of inorganic components in rice plant such as T-N, $P_2O_5$, $K_2O$, CaO, and MgO gradually decreased with the growing stage of rice. However, the amount of available silicate increased with the growing stage of rice. The silicate content in soil was determined by two different methods ; 1N-NaOAc extracted method and submerging setting method. In bituminous ash treated soil, the correlation between the silicate content in plant and in soil was found when the silicate content in soil was determined by the soil submerging method. In anthracite ash treated soil, however no correlation was found between the silicate content in plant and in soil determined by either method.

  • PDF