• 제목/요약/키워드: organic emitting layer

검색결과 703건 처리시간 0.031초

A Study on Dependent Characteristic between The Organic Deposition Rate and The Performance in Organic Light Emitting Device

  • 김문수;최병덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.150.2-150.2
    • /
    • 2015
  • In this study, we analyzed the electric and optical characteristics by using various deposition rate ($0.5{\AA}$, $1.0{\AA}$ and $1.5{\AA}/s$) in order to enhance the performance in organic light-emitting devices (OLED). The organic multi-layer structures were deposited with NPB ($500{\AA}$ as hole transport layer), Alq3 ($600{\AA}$ as electron transport layer and emission layer) and LiF ($8{\AA}$ as electron injection layer) via SUNIC PLUS200 on Glass/ITO substrates. In this experiment, we examined the relationship between porous state of organic deposition and mobility of the organic materials. Among the three deposition rates, $0.5{\AA}/s$ achieved the highest performance of (10,786cd/m2, 4.387cd/A) comparing with that of $1{\AA}/s$ (7,779cd/m2, 3.281cd/A) and $1.5{\AA}/s$ (5,167cd/m2, 2.693cd/A). We confirmed that low deposition rate helps to arrange organic materials densely and to move easily another atomic location using inter-chain transporting by orbital overlap.

  • PDF

Improvement of the permeation properties with a thin hybrid - passivation layer to apply the Large-sized Organic Display Devices

  • Lee, Joo-Won;Bea, Sung-Jin;Park, Jung-Soo;Lee, Young-Hoon;Chin, Byung-Doo;Kim, Jai-Kyeong;Jang, Jin;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1779-1783
    • /
    • 2006
  • The hybrid thin-film (HTF) passivation layer composed of the UV curable acrylate layer and MS-31 (MgO:SiO2=3:1wt%) layer was adopted in organic light emitting diode (OLED) to protect organic light emitting materials from penetrations of oxygen and water vapors. The moisture resistance of the deposited HTF layer was measured by the water vapor transmission rate (WVTR). The results showed that the HTF layer possessed a very low WVTR value of lower than $0.007g/m^2$ per day at $37.8^{\circ}C$ and 100% RH. Therefore, the HTF on the OLED was found to be very effective in protect what from the penetrations of oxygen and moisture.

  • PDF

전면 발광 유기 발광 소자용 반투명 금속의 전기적 및 광학적 특성 (Electrical and Optical Properties of Semitransparent Metal Electrodes for Top-emission Organic Light-emitting Diodes)

  • 신은철;안희철;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.938-942
    • /
    • 2008
  • Electrical and optical properties of semitransparent Ag and Al layer were studied, which are used for the electrodes in top-emission organic light-emitting diodes. Sheet resistance and transmittance of visible light through a thin layer were measured and analyzed. Several thin metal layers of Ag and Al were deposited onto a glass substrate up to a thickness of 50 nm using a thermal evaporation. Sheet resistance measurements show that a layer thickness is needed more than 15 nm and 20 nm for Ag and Al, respectively, when a proper sheet resistance is assumed to be less than $50{\Omega}/sq$. From the measurements of transmittance of visible light through a thin-metal layer, metallic behavior was observed when the layer thickness is over 25 nm for both films. Thus, from a study of sheet resistance and transmittance of visible light, a minimum proper thickness of semitransparent metal layer is 20 nm and 25 nm for Ag and Al, respectively.

정공수송층의 변화에 따른 청색 유기 발광 소자의 특성 (Characteristics on the Variation of Hole transporting layer of Blue organic light-emitting diodes)

  • 김구영;박정현;서지훈;이금희;윤승수;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.434-435
    • /
    • 2007
  • We have demonstrated the characteristics on the variation of hole transporting layer in blue organic light-emitting diodes (OLEDs) using new blue fluorescent emitter. We fabricated two types of hole transporting layer structures that one is 4,4',4"-Tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine (2-TNATA) of $600{\AA}$ as a hole injection layer, N,N'-diphenyl-N,N'- (2-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) of $200{\AA}$ as a hole transporting layer and another device is NPB of $500{\AA}$ without the 2-TNATA. The devices without the 2-TNATA showed improved characteristic of the luminance and efficiency.

  • PDF

색소 doped 유기EL 소자에 의한 고효율화 (Organic Electroluminescence Device using Dye doped Emitting)

  • 임장순;강성종;노병규;오환술
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.261-264
    • /
    • 2000
  • Organic light emitting diodes(OLEDs) have been expected to find an application as a new type of display since C. W. Tang and VanSlyke first reported on high performance OLEDs. This paper has been stuied a green organic EL device using dye doped emitting layer such as C6(Coumarin 6). In the Alq-based e]ectroluminescence diodes, we applied highly fluorescent molecular(Coumarin 6) and obtained enhancement in the electroluminescence efficiency.

  • PDF

전면 유기 발광 소자의 유기물층과 반투명 전극의 두께 변화에 따른 광학적 특성 (Organic-layer and semitransparent electrode thickness dependent optical properties of top-emission organic light-emitting diodes)

  • 안희철;주현우;나수환;한원근;김태완;이원재;정동회
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.57-58
    • /
    • 2008
  • We have studied an organic layer and semitransparent Al electrode thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top-emission device structure is Al(100nm)/TPD(xnm)/Alq(ynm)/LiF(0.5nm)/Al(25nm). While a thickness of total organic layer was varied from 85nm to 165n, a ratio of those two layers was kept to be about 2:3. Semitransparent Al cathode was varied from 20nm to 30nm for the device with an organic layer total thickness of 140nm. As the thickness of total organic layer increases, the emission spectra show a shift of peak wavelength from 490nm to 580nm, and the full width at half maxima from 90nm to 35nm. The emission spectra show a blue shift as the view angle increases. Emission spectra depending on a transmittance of semitransparent cathode show a shift of peak wavelength from 515nm to 593nm. At this time, the full width at half maximum was about to be a constant of 50nm. With this kind of microcavity effect, we were able to control the emission spectra from the top-emission organic light-emitting diodes.

  • PDF

Highly Efficient Green Phosphorescent Organic Light Emitting Diodes

  • Lee, Se-Hyung;Park, Hyung-Dol;Kang, Jae-Wook;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.496-498
    • /
    • 2008
  • We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high quantum efficiency. Wide-energy-gap material, 1,1-bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC), with high triplet energy level was used as a hole transporting layer. Electrophosphorescent devices fabricated using TAPC as a hole-transporting layer and N,N'-dicarbazolyl-4,4'-biphenyl (CBP) doped with fac-tris(2-phenylpyridine) iridium [Ir(ppy)3] as the emitting layer showed the maximum external quantum efficiency ($\eta_{ext}$) of 19.8 %, which is much higher than the devices adopting 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (NPB) (${\eta}B_{ext}=14.6%$) as a hole transporting layer.

  • PDF

Self-organized gradient hole injection to improve the performance of organic light-emitting diodes

  • Lee, Tae-Woo;Chung, Young-Su;Kwon, O-Hyun;Park, Jong-Jin;Chang, Seoung-Wook;Kim, Mu-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1813-1818
    • /
    • 2006
  • We demonstrate a new approach to form gradient hole injection layer (HIL) in organic light-emitting diodes (OLEDs). Single spincoating of hole-injecting conducting polymer compositions with a perfluorinated ionomer results in gradient workfunction through the layer by self-organization, which lead to remarkably efficient single layer polymer light-emitting diodes (PLEDs) (${\sim}21$ cd/A). The device lifetime was significantly improved (${\sim50$ times) compared with the conventional hole injection layer, poly(3,4-ethylenedioxy-thiophene)/polystyrene sulfonate. This solution processed HIL also produced dramatically enhanced luminous efficiency (${\sim}34$ cd/A) in vacuum- deposited green fluorescent OLEDs while the vacuum deposited HIL gave the luminous efficiency of ${\sim}23$ cd/A in the same device structure.

  • PDF

전자수송층이 청색 인광 OLED의 전기 및 광학적 특성에 미치는 영향 (Effects of Electron Transport Layers on Electrical and Optical Characteristics of Blue Phosphorescent Organic Light Emitting Diodes)

  • 서원규;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.323-326
    • /
    • 2009
  • We have developed blue-emitting phosphorescent organic light emitting diodes (OLEDs) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tris (8-quinolinolato)aluminum ($Alq_3$) electron transport layers. As blue dopant and host materials, bis[(4,6-di-fluorophenyl)-pyridinate-N,C2']picolinate (FIrpic) and N,N'-dicarbazolyl-3,5-benzene (mCP) were used, respectively. The driving voltage, current efficiency and emission characteristics of devices were investigated. While the driving voltage was about $1{\sim}2$ V lower in the device with an $Alq_3$ layer, the current efficiency was about 66 % higher in the device with BCP electron transport layer. the blue phosphorescent OLED with BCP layer exhibited higher purity of color, resulting from a relatively weak electroluminescence intensity at 500 nm.

Influence of green phosphorescent organic light-emitting devices of host by hole transport layer

  • Yoon, Do-Yeol;Lee, Chan-Jae;Moon, Dae-Gyu;Lee, Jeong-No
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.814-816
    • /
    • 2009
  • We have investigated the effect of host on the device charactistics of green phosphorescent organic light emitting devices consising of mCP, CBP and TPBi. Electrons were confined within the device by inserting hole transport layer between the electro transport and the emitting layer. When the appropriate interlayers were added, the device with TPBI host layer performances were found to be dramatically enhanced, with current efficiency and lifetime of 18cd/A and 18hour.

  • PDF