• Title/Summary/Keyword: organic electronics

Search Result 716, Processing Time 0.028 seconds

Characteristics of Sputtering Mo Doped Carbon Films and the Application as the Gate Electrode in Organic Thin Film Transistor (스퍼터링 Mo 도핑 탄소박막의 특성과 유기박막트랜지스터의 게이트 전극으로 응용)

  • Kim, Young Gon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.23-26
    • /
    • 2017
  • Mo doped carbon (C:Mo) thin films were fabricated with various Mo target power densities by unbalanced magnetron sputtering (UBM). The effects of target power density on the surface, structural, and electrical properties of C:Mo films were investigated. UBM sputtered C:Mo thin films exhibited smooth and uniform surfaces. However, the rms surface roughness of C:Mo films were increased with the increase of target power density. Also, the resistivity value of C:Mo film as electrical properties was decreased with the increase of target power density. From the performance of organic thin filml transistor using conductive C:Mo gate electrode, the carrier mobility, threshold voltage, and on/off ratio of drain current (Ion/Ioff) showed $0.16cm^2/V{\cdot}s$, -6.0 V, and $7.7{\times}10^4$, respectively.

Photodegradation of Volatile Organic Compound (VOC) Through Pure TiO2 and V-Doped TiO2 Coated Glasses

  • Moon, Jiyeon;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.425.2-425.2
    • /
    • 2014
  • $TiO_2$ possesses great photocatalytic properties but absorbs only UV light owing to high band gap energy (Eg = 3.2 eV). By narrowing the band gap through doping a metal ion, the photocatalytic activity can be enhanced in condition of the light of a higher than 365 nm wavelength. Main purpose for this study is to evaluate the activities of metal doped $TiO_2$ for degrading the volatile organic compounds (VOCs); p-xylene is chosen in the VOC removal test. Vanadium is selected in this study because an ionic radius of vanadium is almost the same as titanium ion and vanadium can be easily doped into $TiO_2$. V-doped $TiO_2$ was synthesized by sol-gel methods and compared with pure $TiO_2$. Pure TiO2 powder and V-doped $TiO_2$ powder were coated on glasses by spray coating method. UV-Visible spectrophotometer was used for the measurement of the band gap changes. VOC concentration degradation level was tested with using various UV light sources in an enclosed chamber. Catalytic activities of prepared samples were evaluated based on the experimental results and compared with coated pure $TiO_2$ sample.

  • PDF

Fabrication and Characterization of an OTFT-Based Biosensor Using a Biotinylated F8T2 Polymer

  • Lim, Sang-Chul;Yang, Yong-Suk;Kim, Seong-Hyun;Kim, Zin-Sig;Youn, Doo-Hyeb;Zyung, Tae-Hyoung;Kwon, Ji-Young;Hwang, Do-Hoon;Kim, Do-Jin
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.647-652
    • /
    • 2009
  • Solution-processable organic semiconductors have been investigated not only for flexible and large-area electronics but also in the field of biotechnology. In this paper, we report the design and fabrication of biosensors based on completely organic thin-film transistors (OTFTs). The active material of the OTFTs is poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) polymer functionalized with biotin hydrazide. The relationship between the chemoresistive change and the binding of avidin-biotin moieties in the polymer is observed in the output and on/off characteristics of the OTFTs. The exposure of the OTFTs to avidin causes a lowering of ID at $V_D$ = -40 V and $V_G$ = -40 V of nearly five orders of magnitude.

Synchrotron radiation photoelectron spectroscopy study of oxygen doping effect by oxygen plasma treatment to inverted top emitting organic light emitting diodes

  • Hong, Ki-Hyon;Kim, Ki-Soo;Kim, Sung-Jun;Choi, Ho-Won;Tak, Yoon-Heung;Lee, Jong-Lam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.118-120
    • /
    • 2009
  • We reported that the evidence of oxygen doping to copper-phthalocyanine (CuPc) by $O_2$-plasma treatment to Au electrode of inverted top emitting organic light emitting diodes (ITOLEDs). The operation voltage of OLEDs at 150 mA/$cm^2$ decreased from 16.1 to 10.3 V as oxygen atoms indiffued to CuPc layer using $O_2$-plasma. Synchrotron radiation photoelectron spectroscopy results showed that a new bond of Cu-O appeared and the energy difference between the highest occupied molecular orbital and $E_F$ is lowered by 0.20 eV after plasma treatment. Thus the hole injection barrier was lowered, reducing the turn-on voltage and increasing the quantum efficiency of OLEDs.

  • PDF

Photodegradation of Volatile Organic Compound (VOC) Through V-Doped or CuOx-grafted $TiO_2$ nanoparticles

  • Kim, Beum Woo;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.271.1-271.1
    • /
    • 2013
  • Titania is usually used in sun-screens, tooth paste, and other daily used objects as a pigment. However, scientists have focused on titania as photocatalyst due to its excellent activities. By fabricating vanadium doped TiO2 and CuOx co-catalyzed TiO2 nano-size filter, the degradation level of the volatile organic compound (VOC) concentration was tested using 365nm UV LED as light source in a closed chamber. Main purpose for this test is to evaluate the activities of various catalysts for degrading the VOCs which are detrimental to human body and toluene and p-xylene were chosen in the VOC removal test. Target gas materials were injected into the test chamber with dry air as carrier gas which was flowed into the gas washer bottle filled with liquid form of VOC substance. When the VOC gas flows into the chamber, it is circulated by 200 mm fan in order to contact with the set-up filter on the aluminum holder. Target gas concentration in the chamber was monitored using VOC detector (miniRae3000, Raesystems) which was also placed inside the chamber. With the measured concentration, the VOC degradation efficiency and the degradation rate were evaluated and used to compare the catalytic activities.

  • PDF

Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED (OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구)

  • Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.

Investigation of Transparent Electrodes for Solution-Processed Organic Solar Cells (용액법 기반의 유기태양전지 제작을 위한 투명전극 개발)

  • Lee, Sumin;Kang, Moon Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.115-120
    • /
    • 2021
  • In this study, composite transparent electrodes were fabricated either from a conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) or silver nanowire (AgNW). Three transparent electrodes such as PEDOT:PSS, PEDOT:PSS and AgNW mixture, and AgNW were fabricated. As for a transparent electrode, measured sheet resistance values were 89.6, 60.6 and 28.6 Ω/sq, and the transmittance values were 80.2, 82.0 and 83.8% while surface roughness (Rq) values were 4.1, 8.1, 20.4 nm for PEDOT:PSS, PEDOT:PSS and AgNW mixture, and AgNW, respectively. To verify the overall performance of these composite electrodes, we applied these electrodes to the top electrode of the solution-processed organic solar cells (OSCs). PEDOT:PSS provided the best performance with a fill factor (FF) of 51.2% and a photoconversion efficiency (PCE) of 2.2%, while traditional metal top electrode OSC provided FF of 60.5% and PCE of 3.1%.

Fabrication of Organic Thin-Film Transistors with Polymer Gate Insulators on Plastic Substrate

  • Ahn, Seong-Deok;Kang, Seung-Youl;Oh, Ji-Young;You, In-Kyu;Kim, Gi-Heon;Baek, Kyu-Ha;Kim, Chul-Am;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1170-1173
    • /
    • 2006
  • Active layer patterned OTFT was obtained on a plastic substrate using the optimal growth condition of pentancene thin films as active layer and parylene thin films as passivation layer. Tranditional photolithography was performed to use a dry etch to pattern the material stack. The pentacene thin film and parylene thin film were deposited onto a plastic substrate using PC-OVD and CVD, respectively.

  • PDF

Unconventional Patterning for Organic Functional Materials Applicable to Renewable Energy Devices (유기물 기반의 새로운 패터닝 기법과 이를 이용한 신재생 에너지 소자)

  • Kim, Sung-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.390-393
    • /
    • 2009
  • We report on a new patterning technique for organic functional materials applicable to organic photovoltacis (OPVs). The unconventioal patterning technique, $O_2$ plsama-etching selectively perfluoro-alkyl fluorosilanes, is used for producing a bulk-heterojunction active layer with poly(3-hexylthiophene) as the electron donor and [6,6]-phenyl-$C_{61}$ butyric acid methyl ester as the electron acceptor. The patterning with reduced leakage path and parasitic capacitance suggests a way for fabrication of OPVs with higher energy conversion efficiency.

High Performance Bottom Contact Organic TFTs on Plastic for Flexible AMLCD

  • Kim, Sung-Hwan;Choi, Hye-Young;Han, Seung-Hoon;Jang, Jin;Cho, Sang-Mi;Oh, Myung-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.889-892
    • /
    • 2004
  • We developed a high performance bottom contact, organic thin-film transistor (OTFT) array on plastic using a self-organized process. The effect of OTS treatment on the PVP gate insulator for the performance of OTFT on plastic has been studied The OTFT without OTS exhibited a field-effect mobility of 0.1 $cm^2$/Vs on/off current ratio of > $10^7$. On the other hand, OTFT with OTS, exhibited a field-effect mobility of 1.3 $cm^2$/Vs and on/off current ratio of>$10^8$.

  • PDF