• 제목/요약/키워드: organic N

검색결과 4,334건 처리시간 0.03초

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments in Upland Soil

  • Shin, Jae-Hoon;Lee, Sang-Min;Lee, Byun-Woo
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.751-760
    • /
    • 2015
  • Management of renewable organic resources is important in attaining the sustainability of agricultural production. However, nutrient management with organic resources is more complex than fertilization with chemical fertilizer because the composition of the organic input or the environmental condition will influence organic matter decomposition and nutrient release. One of the most effective methods for estimating nutrient release from organic amendment is the use of N mineralization models. The present study aimed at parameterizing N mineralization models for a number of organic amendments being used as a nutrient source for crop production. Laboratory incubation experiment was conducted in aerobic condition. N mineralization was investigated for nineteen organic amendments in sandy soil and clay soil at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. N mineralization was facilitated at higher temperature condition. Negative correlation was observed between mineralized N and C:N ratio of organic amendments. N mineralization process was slower in clay soil than in sandy soil and this was mainly due to the delayed nitrification. The single and the double exponential models were used to estimate N mineralization of the organic amendments. N mineralization potential $N_p$ and mineralization rate k were estimated in different temperature and soil conditions. Estimated $N_p$ ranged from 28.8 to 228.1 and k from 0.0066 to 0.6932. The double exponential model showed better prediction of N mineralization compared with the single exponential model, particularly for organic amendments with high C:N ratio. It is expected that the model parameters estimated based on the incubation experiment could be used to design nutrient management planning in environment-friendly agriculture.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

  • Shin, Jae-Hoon;An, Nan-Hee;Lee, Sang-Min;Ok, Jung-Hun;Lee, Byun-Woo
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.712-719
    • /
    • 2016
  • Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.

C:N:P stoichiometry of particulate and dissolved organic matter in river waters and changes during decomposition

  • Islam, Mohammad Jahidul;Jang, Changwon;Eum, Jaesung;Jung, Sung-min;Shin, Myoung-Sun;Lee, Yunkyoung;Choi, Youngsoon;Kim, Bomchul
    • Journal of Ecology and Environment
    • /
    • 제43권1호
    • /
    • pp.14-21
    • /
    • 2019
  • Background: Stoichiometry plays an important role in understanding nutrient composition and cycling processes in aquatic ecosystems. Previous studies have considered C:N:P ratios constant for both DOM (dissolved organic matter) and POM (particulate organic matter). In this study, water samples were collected in the six major rivers in Korea and were incubated for 20 days. C:N:P ratios were determined during the time course of the incubations. This allowed us to examine the changes in N and P contents of organic matter during decomposition. Results: POM and DOM showed significant differences in N and P content and the elemental ratios changed during the course of decomposition; DOM showed higher C:N and C:P ratios than POM, and the C:N and C:P ratios increased during decomposition, indicating the preferential mineralization of P over N and N over C. Conclusions: The N and P contents of organic matter in aquatic ecosystem are far from constant and vary significantly during decomposition. More detailed information on the changes in C:N:P ratios will provide improved understanding of decomposition processes and improved modeling of aquatic ecosystems.

Interfacial Electronic Structures for Electron and Hole Injection in Organic Devices: Nanometer Layers of CsN3 and 1,4,5,8,-naphthalene-tetracarboxylic-dianhydride (NTCDA)

  • Yi, Yeon-Jin;Jeon, Pyeongeu;Lee, Jai-Hyun;Jeong, Kwang-Ho;Kim, Jeong-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.90-90
    • /
    • 2012
  • The electron/hole injections in organic electronic devices have long been an issue due to the large energy level mismatches between electrode and organic layer. To utilize the organic materials in electronic devices, functional thin layers have been used, which reduce the electron/hole injection barrier from electrode to organic material. Typically, inorganic compounds and organic molecules are used as an electron and hole injection layer, respectively. Recently, CsN3 and 1,4,5,8,- naphthalene-tetracarboxylic-dianhydride (NTCDA) are reported as a potential electron and hole injection layers. CsN3 shows unique properties that it breaks into Cs and N and thus Cs can dope organic layer into n-type. On the other side, hole injection anode, NTCDA forms gap states with anode material. In this presentation, we show the electronic structure changes upon the insertion of CsN3 and NTCDA at proper interfaces to reduce the charge injection barriers. These barrier reductions are correlated with device characteristics.

  • PDF

유기농경지에서 생물학적 질소의 이용 (Exploiting Biological Nitrogen in Organic Grassland Farming)

  • Laidlaw, A.S.
    • 한국유기농업학회:학술대회논문집
    • /
    • 한국유기농학회 2011년도 상반기 국제 심포지엄
    • /
    • pp.117-127
    • /
    • 2011
  • The paper outlines farming systems, including organic, in the UK, and provides a context for the use of biological nitrogen (N) from legumes, especially clovers, and manure in organic grassland systems. As N is dynamic within organic ruminant/grassland systems its pathway is described, including its loss and resultant environmental impact. Improvements in the predictability of response to biological N, its role in reducing the carbon footprint of ruminant products and potential to improve its efficiency are discussed.

  • PDF

질소 안정동위원소 자연존재비($\delta^{15}N$)를 이용한 유기벼와 일반벼 판별법 탐색 (Studies on Discrimination between Organic Rice and Non-organic Rice using Natural Abundance of Stable Isotope Nitrogen($\delta^{15}N$))

  • 이효원;이상모
    • 한국유기농업학회지
    • /
    • 제18권2호
    • /
    • pp.257-269
    • /
    • 2010
  • 본 실험은 질소안정동위원소존재비($\delta^{15}N$)를 이용하여 유기벼와 일반벼의 판별 가능성을 탐색하기 위하여 실시하였다. 시료는 전국에 걸처 유기벼 17점, 그리고 유기벼 재배 인근지역에서 일반벼 13점을 수집하여 2008년 11월부터 2010년 1월까지 설문 및 분석 작업을 수행하였다. 벼는 벼와 현미, 백미, 왕겨로 도정한 다음 이들의 질소 및 질소안정동위원소 자연존재비($\delta^{15}N$)를 분석하였다. 이 성분이 두 그룹의 간의 판별에 이용될 수 있을지를 검증하기 위하여 판별분석을 적용, 그 결과를 요약하면 다음과 같다. 1. 유기벼 농가가 사용한 질소원은 퇴비, 쌀겨, 균배양체, 버섯배지, 유박이었고 사용량은 농가에 따라 큰 차이가 있었고, 볏짚은 모두 논에 환원하였다. 그러나 일반벼 농가는 복합비료를 쓰고 볏짚은 회수하여 판매한 경우가 많았다. 2. 유기벼의 벼와 현미, 백미, 왕겨의 중질소자연존재비의 차이가 가장 컸으나 통계적 유의성은 없었고 지역간의 차이도 유의성이 없었다. 일반벼에서도 유기벼와 같은 경향이었다. 3. 유기벼와 일반벼의 질소안정동위원소존재비는 유의한 차이가 있었고(p<0.01) 이러한 차이는 유기 및 비유기 왕겨에서도 나타났다(p<0.05). $\delta^{15}N$값은 유기벼 및 비유기벼 판별의 지표로 유용한 것으로 사료된다. 4. 판별분석 SPSS와 Logistic을 적용하였을 때 현미와 백미를 제외하고 모두 유의한 차이가 있었다. 판별에는 왕겨가 가장 유용하였고, 미지시료의 83.3%가 바르게 분류될 수 있는 것으로 나타났다. SPSS방법은 벼와 왕겨, Logistic 방법은 네 가지 구성성분 모두 유의하게 나타났으나 그 중 검정값이 가장 높게 나타난 것은 왕겨로 83.3%가 바르게 분류될 수 있음이 확인되었다.

두과 작물의 질소고정과 유기조사료생산을 위한 작부체계 (Nitrogen Fixation of legumes and Cropping System for Organic Forage Production)

  • 이효원;박형수
    • 한국유기농업학회지
    • /
    • 제10권1호
    • /
    • pp.49-63
    • /
    • 2002
  • In order to supply 85% of total organic feed in ruminants and 80% in non-ruminants for organic animal production, nitrogen fixation ability of legume should be used in domestic roughages production. 50% of Europe organic farmer use intercropping legume in as green manure. This article is dealing with amount of biologically fixed nitrogen used by legumes and methods for estimating the transfer of biologically fixed N in rotation and separating the N benefit into fixed N and non-fixed N components are reviewed. Available data indicate that transfer amount of N to non legumes was from 50∼9.6(kg/ha) in legume-cereal rotations and proportion of legume N varied with seasons, 90% in summer, 50% in autumn. The important point in cropping system for legumes have to be included for organic forage production 6 year rotation is based on pasture system of 3 year pasture + 2 year annual(com, sudangrass), again pasture. Rye, barly and Italian ryegrass+legumes(vetch, crimson and pea) can be one of option in spring, com, soybean, sudangrass and Japanese bamyard millet would be seeded after spring harvest in the field. Farmer can make good use of rice paddy field as forge production potential area after harvesting rice. Italian, burly and rye+vetch and crimsonclover may be grown in autumn or spring time at the rice field.

  • PDF

Nitrogen Mineralization of Cereal Straws and Vetch in Paddy Soil by Test Tube Analysis

  • Cho, Young-Son;Lee, Byong-Zhin;Choe, Zhin-Ryong
    • 한국작물학회지
    • /
    • 제44권2호
    • /
    • pp.102-105
    • /
    • 1999
  • Mineralization of organic N is an important factor in determining the appropriate rate of organic matter application to paddy fields. A kinetic analysis was conducted for nitrogen mineralization of rice, barley, Chinese milk Ovetch (Astragalus sinicus L.; MV) and narrow leaf vetch straw in paddy soil. Nitrogen immobilization occurred rapidly and its rate increased in straw with high C/N ratio. The amount of nitrogen mineralization was rapid in the first year of rice-vetch cropping system. The rate constant (K) depended on the C/N ratio of organic matter. Mineralization of straw increased at high temperature. The amount of available N increment resulted in fast mineralization of straw, especially in rice and barley straw. Chinese milk vetch had the greatest mineralization rate at all temperatures and fertilization levels followed by narrow-leaf vetch. However, rice and barley straws with high C/N ratio immobilized the soil N at the initial incubation duration. Chinese milk vetch or narrow leaf vetch was not effectively mineralized in mixed treatments with rice or barley straw. The mineralization rate of organic matter was mostly affected by the C/N ratio of straw and temperature of incubation. Organic matter with low C/N ratio should be recommended to avoid the immobilization of soil N and the increasing mineralization rate of straw.

  • PDF

Biodegradation of Hydrocarbons by an Organic Solvent-Tolerant Fungus, Cladosporium resinae NK-1

  • Oh, Ki-Bong;Mar, Woong-Chon;Chang, Il-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.56-60
    • /
    • 2001
  • A kerosene fungus of Cladosporium resinae NK-1 was examined for its ability to degrade individual n-alkanes and aromatic hydrocarbons by gas chromatography-mass spectrometry, and its organic solvent-tolerance was investigated by making use of the water-organic solvent suspension culture method. It grew on a wide range of solvents of varying hydrophobicities and it was found to have tolerance to various kinds of toxic organic solvents (10%, v/v) such as n-alkanes, cyclohexane, xylene, styrene, and toluene. A hydrocarbon degradation experiment indicated that NK-1 had a greater n-alkane degrading ability compared to that of the other selected strains. C. resinae NK-1, which could utilize 8-16 carbon chain-length n-alkanes of medium chain-length as a carbon source, could not assimilate the shorter chain-length n-alkanes and aromatic hydrocarbons tested so far. The n-alkane degrading enzyme activity was found in the mycelial extract of the organism.

  • PDF

천연유기물과 모노클로라민의 반응시 유기성 클로라민 생성 (Formation of Organic Chloramines during Monochloramination of Natural Organic Matters)

  • 이원태
    • 대한환경공학회지
    • /
    • 제36권9호
    • /
    • pp.604-608
    • /
    • 2014
  • 천연유기물질(NOM)과 모노클로라민이 반응할 때 NOM내 용존유기질소(DON)가 유기성 클로라민의 생성에 미치는 영향에 대하여 조사하였다. 실험에 사용된 16가지 NOM의 용존유기탄소(DOC)에 대한 DON의 비(DOC/DON)는 7~47 mg-C/mg-N이었다. NOM 용액의 모노클로라민 반응시 유기성 클로라민 생성 농도는 24시간 후에 최대치(평균값 $0.16mg-Cl_2/mg-N$)로 염소반응에 비하여 유기성 클로라민의 생성량은 적었으나, 분해되어 감소되는 속도는 낮아 반응 120시간 후에 최대치 대비 평균 56% 감소되었다. NOM내 DON의 함유비가 높은 경우(DOC/DON 비가 낮은 경우)에 유기성 클로라민의 생성량이 상대적으로 높게 나타났으나, 소수성, 친수성, 중간성, 콜로이드성 등 NOM의 특성에 따른 유기성 클로라민 생성량의 차이는 크지 않았다. 모노클로라민의 주입량을 증가시킬수록 유기성 클로라민 생성량이 선형적으로 증가하였고($R^2=0.91$), 주입된 모노클로라민 중 6%가 유기성 클로라민으로 전환되어 모노클로라민 소독시 유기성 클로라민 형성에 의한 소독능 저하는 크게 우려할 바는 아닐 수 있다.