• Title/Summary/Keyword: organic N

Search Result 4,345, Processing Time 0.029 seconds

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments in Upland Soil

  • Shin, Jae-Hoon;Lee, Sang-Min;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.751-760
    • /
    • 2015
  • Management of renewable organic resources is important in attaining the sustainability of agricultural production. However, nutrient management with organic resources is more complex than fertilization with chemical fertilizer because the composition of the organic input or the environmental condition will influence organic matter decomposition and nutrient release. One of the most effective methods for estimating nutrient release from organic amendment is the use of N mineralization models. The present study aimed at parameterizing N mineralization models for a number of organic amendments being used as a nutrient source for crop production. Laboratory incubation experiment was conducted in aerobic condition. N mineralization was investigated for nineteen organic amendments in sandy soil and clay soil at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. N mineralization was facilitated at higher temperature condition. Negative correlation was observed between mineralized N and C:N ratio of organic amendments. N mineralization process was slower in clay soil than in sandy soil and this was mainly due to the delayed nitrification. The single and the double exponential models were used to estimate N mineralization of the organic amendments. N mineralization potential $N_p$ and mineralization rate k were estimated in different temperature and soil conditions. Estimated $N_p$ ranged from 28.8 to 228.1 and k from 0.0066 to 0.6932. The double exponential model showed better prediction of N mineralization compared with the single exponential model, particularly for organic amendments with high C:N ratio. It is expected that the model parameters estimated based on the incubation experiment could be used to design nutrient management planning in environment-friendly agriculture.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

  • Shin, Jae-Hoon;An, Nan-Hee;Lee, Sang-Min;Ok, Jung-Hun;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.712-719
    • /
    • 2016
  • Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.

C:N:P stoichiometry of particulate and dissolved organic matter in river waters and changes during decomposition

  • Islam, Mohammad Jahidul;Jang, Changwon;Eum, Jaesung;Jung, Sung-min;Shin, Myoung-Sun;Lee, Yunkyoung;Choi, Youngsoon;Kim, Bomchul
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Background: Stoichiometry plays an important role in understanding nutrient composition and cycling processes in aquatic ecosystems. Previous studies have considered C:N:P ratios constant for both DOM (dissolved organic matter) and POM (particulate organic matter). In this study, water samples were collected in the six major rivers in Korea and were incubated for 20 days. C:N:P ratios were determined during the time course of the incubations. This allowed us to examine the changes in N and P contents of organic matter during decomposition. Results: POM and DOM showed significant differences in N and P content and the elemental ratios changed during the course of decomposition; DOM showed higher C:N and C:P ratios than POM, and the C:N and C:P ratios increased during decomposition, indicating the preferential mineralization of P over N and N over C. Conclusions: The N and P contents of organic matter in aquatic ecosystem are far from constant and vary significantly during decomposition. More detailed information on the changes in C:N:P ratios will provide improved understanding of decomposition processes and improved modeling of aquatic ecosystems.

Interfacial Electronic Structures for Electron and Hole Injection in Organic Devices: Nanometer Layers of CsN3 and 1,4,5,8,-naphthalene-tetracarboxylic-dianhydride (NTCDA)

  • Yi, Yeon-Jin;Jeon, Pyeongeu;Lee, Jai-Hyun;Jeong, Kwang-Ho;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.90-90
    • /
    • 2012
  • The electron/hole injections in organic electronic devices have long been an issue due to the large energy level mismatches between electrode and organic layer. To utilize the organic materials in electronic devices, functional thin layers have been used, which reduce the electron/hole injection barrier from electrode to organic material. Typically, inorganic compounds and organic molecules are used as an electron and hole injection layer, respectively. Recently, CsN3 and 1,4,5,8,- naphthalene-tetracarboxylic-dianhydride (NTCDA) are reported as a potential electron and hole injection layers. CsN3 shows unique properties that it breaks into Cs and N and thus Cs can dope organic layer into n-type. On the other side, hole injection anode, NTCDA forms gap states with anode material. In this presentation, we show the electronic structure changes upon the insertion of CsN3 and NTCDA at proper interfaces to reduce the charge injection barriers. These barrier reductions are correlated with device characteristics.

  • PDF

Exploiting Biological Nitrogen in Organic Grassland Farming (유기농경지에서 생물학적 질소의 이용)

  • Laidlaw, A.S.
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2011.06a
    • /
    • pp.117-127
    • /
    • 2011
  • The paper outlines farming systems, including organic, in the UK, and provides a context for the use of biological nitrogen (N) from legumes, especially clovers, and manure in organic grassland systems. As N is dynamic within organic ruminant/grassland systems its pathway is described, including its loss and resultant environmental impact. Improvements in the predictability of response to biological N, its role in reducing the carbon footprint of ruminant products and potential to improve its efficiency are discussed.

  • PDF

Studies on Discrimination between Organic Rice and Non-organic Rice using Natural Abundance of Stable Isotope Nitrogen($\delta^{15}N$) (질소 안정동위원소 자연존재비($\delta^{15}N$)를 이용한 유기벼와 일반벼 판별법 탐색)

  • Lee, Hyo-Won;Lee, Sang-Mo
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.2
    • /
    • pp.257-269
    • /
    • 2010
  • To investigate the possibility of discrimination between organic and non-organic rice using stable isotope nitrogen of natural abundance, organic rice of 17 samples and non-organic rice of 13 samples grown at adjoining organic rice field were collected in 2008. Rice was grinded into brown rice, milled rice and hull, and samples were analysed for nitrogen and $\delta^{15}N$ at NICEM. Authors also made inquiries about N source for both farmers who conduct organic- and non-organic rice cultivation. In order to know whether the $\delta^{15}N$ can be used in discrimination between organic and non-organic rice, discriminant analysis were made with SPSS and logistic method. 1. Organic farmers used manure, rice bran, used mushroom culture, fermented fertilizer (company products), and oil cake, but non-organic farmers applied compound fertilizer. Rice straws were remained in organic rice field while moved out in non-organic field. 2. There were difference in $\delta^{15}N$ among organic rice and its byproduct(7.760????% in hull, 6.720????% in rice), but significant difference was not found between them. And the trend was same between province. Non-organic rice showed similar results. 3. Significant difference of $\delta^{15}N$ were found between organic rice and non-organic rice (p<0.01) and between hull of organic rice and that of non-organic rice hull (p<0.05). $\delta^{15}N$ seemed to be useful criteria for discrimination of organic and non-organic rice. 4. When applied discrimination analysis of SPSS and logistic, there were significant difference between organic rice, non-organic rice and its byproducts except brown rice and hull in SPSS method. Hull can be used as the most useful component for unknown sample prediction with 83.3% probability.

Nitrogen Fixation of legumes and Cropping System for Organic Forage Production (두과 작물의 질소고정과 유기조사료생산을 위한 작부체계)

  • 이효원;박형수
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.1
    • /
    • pp.49-63
    • /
    • 2002
  • In order to supply 85% of total organic feed in ruminants and 80% in non-ruminants for organic animal production, nitrogen fixation ability of legume should be used in domestic roughages production. 50% of Europe organic farmer use intercropping legume in as green manure. This article is dealing with amount of biologically fixed nitrogen used by legumes and methods for estimating the transfer of biologically fixed N in rotation and separating the N benefit into fixed N and non-fixed N components are reviewed. Available data indicate that transfer amount of N to non legumes was from 50∼9.6(kg/ha) in legume-cereal rotations and proportion of legume N varied with seasons, 90% in summer, 50% in autumn. The important point in cropping system for legumes have to be included for organic forage production 6 year rotation is based on pasture system of 3 year pasture + 2 year annual(com, sudangrass), again pasture. Rye, barly and Italian ryegrass+legumes(vetch, crimson and pea) can be one of option in spring, com, soybean, sudangrass and Japanese bamyard millet would be seeded after spring harvest in the field. Farmer can make good use of rice paddy field as forge production potential area after harvesting rice. Italian, burly and rye+vetch and crimsonclover may be grown in autumn or spring time at the rice field.

  • PDF

Nitrogen Mineralization of Cereal Straws and Vetch in Paddy Soil by Test Tube Analysis

  • Cho, Young-Son;Lee, Byong-Zhin;Choe, Zhin-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.102-105
    • /
    • 1999
  • Mineralization of organic N is an important factor in determining the appropriate rate of organic matter application to paddy fields. A kinetic analysis was conducted for nitrogen mineralization of rice, barley, Chinese milk Ovetch (Astragalus sinicus L.; MV) and narrow leaf vetch straw in paddy soil. Nitrogen immobilization occurred rapidly and its rate increased in straw with high C/N ratio. The amount of nitrogen mineralization was rapid in the first year of rice-vetch cropping system. The rate constant (K) depended on the C/N ratio of organic matter. Mineralization of straw increased at high temperature. The amount of available N increment resulted in fast mineralization of straw, especially in rice and barley straw. Chinese milk vetch had the greatest mineralization rate at all temperatures and fertilization levels followed by narrow-leaf vetch. However, rice and barley straws with high C/N ratio immobilized the soil N at the initial incubation duration. Chinese milk vetch or narrow leaf vetch was not effectively mineralized in mixed treatments with rice or barley straw. The mineralization rate of organic matter was mostly affected by the C/N ratio of straw and temperature of incubation. Organic matter with low C/N ratio should be recommended to avoid the immobilization of soil N and the increasing mineralization rate of straw.

  • PDF

Biodegradation of Hydrocarbons by an Organic Solvent-Tolerant Fungus, Cladosporium resinae NK-1

  • Oh, Ki-Bong;Mar, Woong-Chon;Chang, Il-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • A kerosene fungus of Cladosporium resinae NK-1 was examined for its ability to degrade individual n-alkanes and aromatic hydrocarbons by gas chromatography-mass spectrometry, and its organic solvent-tolerance was investigated by making use of the water-organic solvent suspension culture method. It grew on a wide range of solvents of varying hydrophobicities and it was found to have tolerance to various kinds of toxic organic solvents (10%, v/v) such as n-alkanes, cyclohexane, xylene, styrene, and toluene. A hydrocarbon degradation experiment indicated that NK-1 had a greater n-alkane degrading ability compared to that of the other selected strains. C. resinae NK-1, which could utilize 8-16 carbon chain-length n-alkanes of medium chain-length as a carbon source, could not assimilate the shorter chain-length n-alkanes and aromatic hydrocarbons tested so far. The n-alkane degrading enzyme activity was found in the mycelial extract of the organism.

  • PDF

Formation of Organic Chloramines during Monochloramination of Natural Organic Matters (천연유기물과 모노클로라민의 반응시 유기성 클로라민 생성)

  • Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.604-608
    • /
    • 2014
  • This study investigated influence of dissolved organic nitrogen (DON) in natural organic matter (NOM) on the formation of organic chloramines upon monochloramination. Ratios of dissolved organic carbon (DOC) to DON of the 16 NOM isolates ranged from 7 to 47 mg-C/mg-N. Levels of organic chloramines maxed in 24 hours at $0.16mg-Cl_2/mg-N$ in average. The yields were relatively lower, but decay of organic chloramines were slower than those upon chlorination. Organic chloramines formed upon monochloramination decreased by 56% in average in 120 h. NOM with lower DOC/DON ratios formed more organic chloramines. NOM fractions such as hydrophobic, hydrophilic, transphilic, and colloidal did not significantly impact formation of organic chloramines. As the monochloramine doses increased, more organic chloramines were produced ($R^2=0.91$). Overestimation of disinfection capacity due to the formation of organic chloramines may not be concerns for monochloramine systems since only 6% of monochloramine could be converted to organic chloramines upon monochloramination of NOM.