• 제목/요약/키워드: organic/inorganic hybrid

검색결과 364건 처리시간 0.032초

유-무기 하이브리드 형 Abaca 셀룰로오스/이산화 티타늄 복합체의 제조 및 이의 광촉매적 특성 (Preparation and Photocatalyric Properties of Organic-Inorganic Hybrid Abaca Cellulose@Titanium Dioxide Composite)

  • 강수아;김영호
    • 공업화학
    • /
    • 제34권1호
    • /
    • pp.57-63
    • /
    • 2023
  • 본 연구에서는 Abaca 나노 셀룰로오스와 이산화 티타늄(TiO2)의 유-무기 하이브리드 복합체를 제조하였다. Abaca 나노 셀룰로오스는 Abaca 셀룰로오스를 산화시키는 방법으로 제조하였으며, 촉매로서 TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl)를 이용하였다. TiO2 나노입자는 sol-gel법으로 제조하였으며 이를 나노 셀룰로오스와 하이브리드(hybrid) 시켜 복합체를 제조하였다. 제조 pH 변화에 따른 복합체의 특성과 그의 물성을 비교해 본 결과, 나노 셀룰로오스와 이산화 티타늄 결합 시 pH의 영향이 매우 컸으며, 본 실험 조건에서 pH 8에서 최적의 결합성능을 나타냈다. 또한, 제조된 복합체는 광촉매 특성을 보였으며, 이산화 티타늄의 함량이 높을수록 UV광 조사에 따라 복합체의 친수성이 증가하였다.

PVdF/SPEEK/TiO2 하이브리드 막의 수분함량과 메탄올 전이현상 (Water Swelling and Methanol Transport Behaviour of $PVdF/SPEEK/TiO_2$ Hybrid Membrane)

  • 유선경;김한주;박수길;김영재
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.233-240
    • /
    • 2005
  • A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxidenanoparticles content. Their water uptake, methanol permeability and proton conductivity as a function of inoranic oxide content were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase In inorganic oxide content leads to decrease of methanol permeability. In terms of the morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with the standard nafion membrane.

  • PDF

DMFC용 $PVdF/SPEEK/TiO_2$ 하이브리드 막의 수분함량과 메탄올 전이현상 (Liquid uptake and Methanol Transport Behaviour of $PVdF/SPEEK/TiO_2$ Hybrid Membrane for DMFC)

  • 유선경;김한주;김영재;박수길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.194-196
    • /
    • 2005
  • A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxidenanoparticles content. Their liquid uptake, methanol permeability and proton conductivity as a function of inoranic oxide content were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and liquid uptake. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of the morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with the standard nafion membrane.

  • PDF

Effect of Organic Materials in Water Treatment by Hybrid Module of Multi-channel Ceramic Microfiltration and Activated Carbon Adsorption

  • Park, Jin-Yong;Lee, Sang-Min
    • Korean Membrane Journal
    • /
    • 제11권1호
    • /
    • pp.21-28
    • /
    • 2009
  • We investigated the effect of organic materials on membrane fouling in advanced drinking water treatment by a hybrid module packed with granular activated carbon (GAC) outside multi-channel ceramic microfiltration membrane. Synthetic water was prepared with humic acid and kaolin to simulate natural water resouces consisting of natural organic matter and inorganic particles. Kaolin concentration was fixed at 30 mg/L and humic acid was changed as 2~10 mg/L to inspect the effect of organic matters. Periodic back-flushing using permeate water was performed for 10 sec per filtration of 10 min. As a result, both resistance of membrane fouling (Rf) and permeate flux (J) were influenced highly by concentration of humic acid. It proved that NOM like humic acid could be an important factor on membrane fouling in drinking water treatment. Turbidity and UV254 absorbance were removed up to above 97.4% and 59.2% respectively.

Crystallization of Poly(vinylidene fluoride)-SiO2 Hybrid Composites Prepared by a Sol-gel Process

  • Cho, Jae Whan;Sul, Kyun Il
    • Fibers and Polymers
    • /
    • 제2권3호
    • /
    • pp.135-140
    • /
    • 2001
  • Organic-inorganic hybrid composites consisting of poly(vinylidene fluoride) (PVDF) and SiO$_2$ were prepared through a sol-gel process and the crystallization behavior of PVDF in the presence of $SiO_2$ networks was investigated by spectroscopic, thermal and x-ray diffraction measurements. The hybrid composites obtained were relatively transparent, and brittleness increased with increasing content of tetraethoxysilane (TEOS). It was regarded from FT-lR and DSC thermal analyses that at least a certain interaction existed between PVDF molecules and the $SiO_2$ networks. X-ray diffraction measurements showed that all of the hybrid samples had a crystal structure of PVDF ${\gamma}$-phase. Fresh gel prepared from the sol-gel reaction showed a very weak x-ray diffraction peak near 2$\theta$=$21^{\circ}$ due to PVDF crystallization, and Intensity increased grade-ally with time after gelation. The crystallization behavior of PVDF was strongly affected by the amount of $SiO_2$ networks. That is, $SiO_2$ content directly influenced preference and disturbance fur crystallization. In polymer-rich hybrids, $SiO_2$ networks had a favorable effect on the extent of PVDF crystallization. In particular, the maximum portent crystallinity of PVDF occurred at the content of 3.7 wt% $SiO_2$ and was higher than that of pure PVDF. However. beyond about 10 wt% $SiO_2$, the crystallization of PVDF was strongly confined.

  • PDF

유기 염료-무기 실리카 하이브리드 안료의 제조와 분산잉크로서 응용 (Preparation of Organic Dye-Inorganic Silica Hybrid Pigment and It's Application for Inkjet Dispersion Ink)

  • 전영민;김종규;공명선
    • 한국재료학회지
    • /
    • 제16권7호
    • /
    • pp.422-429
    • /
    • 2006
  • Studies were performed on preparation of organic-inorganic hybrid silica dye in a dispersing ink system. The silica was subjected to surface modification using 3-aminopropyltrimethoxysilane (APTMS) in order to promote the chemical reactivity of the raw silica. On the surfaces of the aminosilane-functionalised silica, red vinylsulfone-containing azo dye was adsorbed. The dye was found to have chemically reacted with the aminosilane-grafted silica surface, which was proven by FT-IR spectra. Studies on morphology and microstructure were performed employing scanning electron microscopy. The SEM micrographs and particle size distributions showed that a homogeneous pigment can be obtained employing silica as a core. Particle size distribution was also examined using the technique of dynamic light scattering. The ensuing pigment was subjected to various physicochemical evaluation such as inkjet property, storage stability, color change as inkjet ink using printer, spectrophotometric, microscopic techniques. Studies on hybrid dyes from the silica surface demonstrated that, in general, stable pigments for inkjet dispersion ink were obtained.

Synthesis of o-Xylene-Organosilicon Hybrid Polymer and Its Optical Properties

  • Choi, Jin-Kyu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.515-518
    • /
    • 2013
  • We present synthesis of a new kind of organic-inorganic hybrid polymer, poly xylene-hexamethyltrisiloxane hybrid (PXS) by a new synthetic way from o-xylene and 1,1,3,3,5,5-hexamethyltrisiloxane. The merged molecular structure of the two monomeric components for the PXS polymer was confirmed by $^{13}C$- and $^1H$-NMR, and FT-IR. Its optical absorption and emission properties were investigated by UV-vis absorption and photoluminescence (PL) spectroscopy. The PXS exhibits absorption at 265 nm which is the same with the o-xylene but tailing up to nearly 400 nm, which is maybe related the polymeric structure of the PXS. For the PL investigation, the PXS shows red-shift of the peak from 288 nm (o-xylene) to 372 nm in the case of excitation at 265 nm, at which both PXS and o-xylene have sufficiently high absorption for excitation. When 325-nm laser is used for excitation, the PXS shows a broader peak at 395 nm compared to the excitation at 265 nm and the o-xylene shows no luminescence probably due to the lack of absorption at 325 nm.

연속공정기반 저온 상압 원자층 증착 시스템을 이용한 유무기 멀티레이어 배리어 박막에 관한 연구 (A Study on the Organic-Inorganic Multilayer Barrier Thin Films Using R2R Low-Temperature Atmospheric-Pressure Atomic Layer Deposition System)

  • 이재욱;김현범;최경현
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, the organic material Poly(methyl methacrylate) PMMA is used with inorganic $Al_2O_3$ to fabricate organic-inorganic multilayer barrier thin films. The organic thin films are developed using a roll-to-roll electrohydrodynamic atomization system, whereas the inorganic are grown using a roll-to-roll low-temperature atmospheric pressure atomic layer deposition system. For the first time, these two technologies are used together to develop organic-inorganic multilayer barrier thin films in atmospheric condition. The films are grown under optimized parameters and classified into three classes based on the layer structures, when the total thickness of the barrier is maintained at ~ 160 nm. All classes of barriers show good morphological, optical and chemical properties. The $Al_2O_3$ films with a low average arithmetic roughness of 1.58 nm conceal the non-uniformity and irregularities in PMMA thin films with a roughness of 5.20 nm. All classes of barriers show a notably good optical transmission of ~ 85 %. The hybrid organic-inorganic barriers show water vapor and oxygen permeation in the range of ${\sim}3.2{\times}10^{-2}g/m^2/day$ and $0.015cc/m^2/day$ at $23^{\circ}C$ and 100% relative humidity. It has been confirmed that it can be mass-produced and used as a low-cost barrier thin film in various printing electronic devices.