• 제목/요약/키워드: organ doses

검색결과 252건 처리시간 0.026초

Investigation on Individual Variation of Organ Doses for Photon External Exposures: A Monte Carlo Simulation Study

  • Yumi Lee;Ji Won Choi;Lior Braunstein;Choonsik Lee;Yeon Soo Yeom
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.50-64
    • /
    • 2024
  • Background: The reference dose coefficients (DCs) of the International Commission on Radiological Protection (ICRP) have been widely used to estimate organ doses of individuals for risk assessments. This approach has been well accepted because individual anatomy data are usually unavailable, although dosimetric uncertainty exists due to the anatomical difference between the reference phantoms and the individuals. We attempted to quantify the individual variation of organ doses for photon external exposures by calculating and comparing organ DCs for 30 individuals against the ICRP reference DCs. Materials and Methods: We acquired computed tomography images from 30 patients in which eight organs (brain, breasts, liver, lungs, skeleton, skin, stomach, and urinary bladder) were segmented using the ImageJ software to create voxel phantoms. The phantoms were implemented into the Monte Carlo N-Particle 6 (MCNP6) code and then irradiated by broad parallel photon beams (10 keV to 10 MeV) at four directions (antero-posterior, postero-anterior, left-lateral, right-lateral) to calculate organ DCs. Results and Discussion: There was significant variation in organ doses due to the difference in anatomy among the individuals, especially in the kilovoltage region (e.g., <100 keV). For example, the red bone marrow doses at 0.01 MeV varied from 3 to 7 orders of the magnitude depending on the irradiation geometry. In contrast, in the megavoltage region (1-10 MeV), the individual variation of the organ doses was found to be negligibly small (differences <10%). It was also interesting to observe that the organ doses of the ICRP reference phantoms showed good agreement with the mean values of the organ doses among the patients in many cases. Conclusion: The results of this study would be informative to improve insights in individual-specific dosimetry. It should be extended to further studies in terms of many different aspects (e.g., other particles such as neutrons, other exposures such as internal exposures, and a larger number of individuals/patients) in the future.

Organ dose reconstruction for the radiation epidemiological study of Korean radiation workers: The first dose evaluation for the Korean Radiation Worker Study (KRWS)

  • Tae-Eun Kwon;Areum Jeong;Wi-Ho Ha;Dalnim Lee;Songwon Seo;Junik Cho;Euidam Kim;Yoonsun Chung;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.725-733
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences has started a radiation epidemiological study, titled "Korean Radiation Worker Study," to evaluate the health effects of occupational exposure to radiation. As a part of this study, we investigated the methodologies and results of reconstructing organ-specific absorbed doses based on personal dose equivalent, Hp(10), reported from 1984 to 2019 for 20,605 Korean radiation workers. For the organ dose reconstruction, representative exposure scenarios (i.e., radiation energy and exposure geometry) were first determined according to occupational groups, and dose coefficients for converting Hp(10) to organ absorbed doses were then appropriately taken based on the exposure scenarios. Individual annual doses and individual cumulative doses were reconstructed for 27 organs, and the highest values were observed in the thyroid doses (on average 0.77 mGy/y and 10.47 mGy, respectively). Mean values of individual cumulative absorbed doses for the red bone marrow, colon, and lungs were 7.83, 8.78, and 8.43 mSv, respectively. Most of the organ doses were maximum for industrial radiographers, followed by nuclear power plant workers, medical workers, and other facility workers. The organ dose database established in this study will be utilized for organ-specific risk estimation in the Korean Radiation Worker Study.

축방향 CT 스캔과 나선형 CT 스캔에서 영·유아의 장기흡수선량 비교 평가 (A Comparative Evaluation of Organ Doses in Infants and toddlers between Axial and Spiral CT Scanning)

  • 김상태;은성종;김성길
    • 한국방사선학회논문지
    • /
    • 제7권2호
    • /
    • pp.137-143
    • /
    • 2013
  • 성인에 비해 방사선에 민감하고 검사건수가 증가하고 있는 영 유아의 CT 스캔 시의 장기흡수선량을 평가하기 위해 스캔부위를 머리부위와 가슴부위로 구분하고 64 MDCT를 이용하여 축방향 스캔과 나선형 스캔으로 비교했다. 스캔부위에 상관없이 나선형 스캔 시의 선량이 축방향 스캔 시 보다 유의하게 낮은 것으로 나타났다. 축방향 스캔과 비교해서 나선형 스캔 중 피치 1.355를 사용했을 때가 나머지 두 피치(0.525, 0.988)를 사용했을 때보다 가슴부위 스캔의 평균 장기흡수선량이 유의하게 높게(평균 -12.03%) 나왔다. 나선형 스캔 시 장기흡수선량이 축방향 스캔보다 평균 20.54% 낮게 나왔다. 결과적으로 인체모형을 통한 장기흡수선량을 평가한 본 연구는 몬테카를로 시뮬레이션 결과값을 실증하고, CT 검사를 받는 영 유아의 장기흡수선량의 보다 정확한 평가에 기여할 것이다.

Organ dose conversion coefficients in CT scans for Korean adult males and females

  • Lee, Choonsik;Won, Tristan;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Kim, Kwang Pyo
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.681-688
    • /
    • 2022
  • Dose monitoring in CT patients requires accurate dose estimation but most of the CT dose calculation tools are based on Caucasian computational phantoms. We established a library of organ dose conversion coefficients for Korean adults by using four Korean adult male and two female voxel phantoms combined with Monte Carlo simulation techniques. We calculated organ dose conversion coefficients for head, chest, abdomen and pelvis, and chest-abdomen-pelvis scans, and compared the results with the existing data calculated from Caucasian phantoms. We derived representative organ doses for Korean adults using Korean CT dose surveys combined with the dose conversion coefficients. The organ dose conversion coefficients from the Korean adult phantoms were slightly greater than those of the ICRP reference phantoms: up to 13% for the brain doses in head scans and up to 10% for the dose to the small intestine wall in abdominal scans. We derived Korean representative doses to major organs in head, chest, and AP scans using mean CTDIvol values extracted from the Korean nationwide surveys conducted in 2008 and 2017. The Korean-specific organ dose conversion coefficients should be useful to readily estimate organ absorbed doses for Korean adult male and female patients undergoing CT scans.

Estimating Organ Doses from Pediatric Cerebral Computed Tomography Using the WAZA-ARI Web-Based Calculator

  • Etani, Reo;Yoshitake, Takayasu;Kai, Michiaki
    • Journal of Radiation Protection and Research
    • /
    • 제46권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Background: The use of computed tomography (CT) device has increased in the past few decades in Japan. Dose optimization is strongly required in pediatric CT examinations, since there is concern that an unreasonably excessive medical radiation exposure might increase the risk of brain cancer and leukemia. To accelerate the process of dose optimization, continual assessment of the dose levels in actual hospitals and medical facilities is necessary. This study presents organ dose estimation using pediatric cerebral CT scans in the Kyushu region, Japan in 2012 and the web-based calculator, WAZA-ARI (https://waza-ari.nirs.qst.go.jp). Materials and Methods: We collected actual patient information and CT scan parameters from hospitals and medical facilities with more than 200 beds that perform pediatric CT in the Kyushu region, Japan through a questionnaire survey. To estimate the actual organ dose (brain dose, bone marrow dose, thyroid dose, lens dose), we divided the pediatric population into five age groups (0, 1, 5, 10, 15) based on body size, and inputted CT scan parameters into WAZA-ARI. Results and Discussion: Organ doses for each age group were obtained using WAZA-ARI. The brain dose, thyroid dose, and lens dose were the highest in the Age 0 group among the age groups, and the bone marrow and thyroid doses tended to decrease with increasing age groups. All organ doses showed differences among facilities, and this tendency was remarkable in the young group, especially in the Age 0 group. This study confirmed a difference of more than 10-fold in organ doses depending on the facility and CT scan parameters, even when the same CT device was used in the same age group. Conclusion: This study indicated that organ doses varied widely by age group, and also suggested that CT scan parameters are not optimized for children in some hospitals and medical facilities.

몬테카를로 방법을 이용한 임신한 여성 핵의학 종사자의 모체 장기 및 태아선량 평가 (Assessment of Maternal Organs and Fetal Doses in Pregnant Female Nuclear Medicine Practitioners Using the Monte Carlo Method)

  • 조용인
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권4호
    • /
    • pp.331-339
    • /
    • 2022
  • The purpose of this study was to evaluate maternal organ and fetal doses by week of pregnancy for pregnant women nuclear medicine practitioners in the nuclear medicine field. In addition, we intend to present basic data for the management of exposure doses of female nuclear medicine practitioners. In this study, phantoms of childbearing women, 3, 6, 9 months pregnant women were simulated using MCNPX(Monte Carlo N-Particle Extended) among the Monte Carlo methods. First, volume source was constructed based on 10 cm of the anterior part of the lower abdomen of the phantom, and the organ and fetal doses were evaluated for each week of the pregnant woman according to the type of radioactive isotope. Second, the organ and fetal dose of pregnant women were evaluated by increasing the distance between the source and the abdominal surface by 50 and 100 cm. As a result, 18F sources showed high organ and fetal doses in pregnant women 0 to 3 months, and the dose distribution gradually decreased in 6 to 9 months pregnant women. The distribution of organ and fetal doses for 99mTc and 123I sources showed the same tendency as that of 18F, and the overall absorbed dose distribution was relatively lower than that of 18F. Through this study, it is considered that workers in the early stages of pregnancy within 3 months will need appropriate management to minimize occupational exposure dose.

PCXMC 소프트웨어를 이용한 소아에서의 CBCT 환자선량 평가 (Dose estimation of cone-beam computed tomography in children using personal computer-based Monte Carlo software)

  • 김은경
    • 대한치과의사협회지
    • /
    • 제58권7호
    • /
    • pp.388-397
    • /
    • 2020
  • Objective: The purpose of the study was to calculate the effective and absorbed organ doses of cone-beam computed tomography (CBCT) in pediatric patient using personal computer-based Monte Carlo (PCXMC) software and to compare them with those measured using thermoluminescent dosimeters (TLDs) and anthropomorphic phantom. Materials and Methods: Alphard VEGA CBCT scanner was used for this study. A large field of view (FOV) (20.0 cm × 17.9 cm) was selected because it is a commonly used FOV for orthodontic analyses in pediatric patients. Ionization chamber of dose-area product (DAP) meter was located at the tube side of CBCT scanner. With the clinical exposure settings for a 10-year-old patient, DAP value was measured at the scout and main projection of CBCT. Effective and absorbed organ doses of CBCT at scout and main projection were calculated using PCXMC and PCXMCRotation software respectively. Effective dose and absorbed organ doses were compared with those obtained by TLDs and a 10-year-old child anthropomorphic phantom at the same exposure settings. Results: The effective dose of CBCT calculated by PCXMC software was 292.6 μSv, and that measured using TLD and anthropomorphic phantom was 292.5 μSv. The absorbed doses at the organs largely contributing to effective dose showed the small differences between two methods within the range from -18% to 20%. Conclusion: PCXMC software might be used as an alternative to the TLD measurement method for the effective and absorbed organ dose estimation in CBCT of large FOV in pediatric patients.

  • PDF

Dose Estimation of Patient by X-ray Positioning in Particle Cancer Therapy

  • Hirai, Masaaki;Nishizawa, Kanae;Shibayama, Kouichi;Kanai, Tatsuaki
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.206-207
    • /
    • 2002
  • The effective dose due to the X-Ray radiography in the patient positioning for the heavy ion radiotherapy was measured on three regions, chest, upper-abdomen and pelvis. All the radiographic systems and the conditions used in the measurements were same as the clinical trial being performed in National Institute of Radiological Sciences, Japan. The organ or tissue for measurements was selected by following ICRP60$^1$ and the effective dose was calculated from measured organ doses and the surface dose.

  • PDF

Bias-corrected Hp(10)-to-Organ-Absorbed Dose Conversion Coefficients for the Epidemiological Study of Korean Radiation Workers

  • Jeong, Areum;Kwon, Tae-Eun;Lee, Wonho;Park, Sunhoo
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.158-166
    • /
    • 2022
  • Background: The effects of radiation on the health of radiation workers who are constantly susceptible to occupational exposure must be assessed based on an accurate and reliable reconstruction of organ-absorbed doses that can be calculated using personal dosimeter readings measured as Hp(10) and dose conversion coefficients. However, the data used in the dose reconstruction contain significant biases arising from the lack of reality and could result in an inaccurate measure of organ-absorbed doses. Therefore, this study quantified the biases involved in organ dose reconstruction and calculated the bias-corrected Hp(10)-to-organ-absorbed dose coefficients for the use in epidemiological studies of Korean radiation workers. Materials and Methods: Two major biases were considered: (a) the bias in Hp(10) arising from the difference between the dosimeter calibration geometry and the actual exposure geometry, and (b) the bias in air kerma-to-Hp(10) conversion coefficients resulting from geometric differences between the human body and slab phantom. The biases were quantified by implementing personal dosimeters on the slab and human phantoms coupled with a Monte Carlo method and considered to calculate the bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients. Results and Discussion: The bias in Hp(10) was significant for large incident angles and low energies (e.g., 0.32 for right lateral at 218 keV), whereas the bias in dose coefficients was significant for the posteroanterior (PA) geometry only (e.g., 0.79 at 218 keV). The bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients derived in this study were up to 3.09- fold greater than those from the International Commission on Radiological Protection publications without considering the biases. Conclusion: The obtained results will aid future studies in assessing the health effects of occupational exposure of Korean radiation workers. The bias-corrected dose coefficients of this study can be used to calculate organ doses for Korean radiation workers based on personal dose records.

자궁경부암의 고선량률 근접치료시 장기묘사 방법에 따른 직장과 방광의 선량비교 분석 (Bladder And Rectum Dose Define 3D Treatment Planning for Cervix Cancer Brachtherapy Comparison of Dose-Volume Histograms for Organ Contour and Organ Wall Contour)

  • 김종원;김대현;최준용;원영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제35권4호
    • /
    • pp.327-333
    • /
    • 2012
  • 직장과 방광 장기의 내부공간을 뺀 나머지 실질적 용적에 얼마큼의 방사선이 조사되는지를 묘사방법에 따라 직장과 방광의 볼륨에 따른 흡수선량을 dose-volume histogram(DVH)를 이용하여 선량을 비교 분석 하였다. 자궁경부암 환자 중 고선량률 근접치료기를 이용하여 치료 받는 13명(tandem and ovoid used 13명)을 대상으로 강내치료계획은 외부방사선치료(50.4 Gy)가 끝난 후 수립되었으며 모든 환자에 컴퓨터 단층촬영(computed tomography, CT) 모의치료가 시행되었고 치료계획장비는 PLATO BPS v13.7를 이용하여 3D plan을 하였다. 치료계획에서 직장, 방광의 organ outer wall contour(OOWC)와 organ wall contour(OWC)를 묘사 후 ICRU 38에 근거하여 A점에 100 %를 조사하는 치료계획을 수립하였다. 분석방법으로 치료계획장비의 Dose-Volume Histogram(DVH)을 이용하여 직장과 방광의 묘사방법에 따라 0.1 $cm^3$, 1 $cm^3$, 2 $cm^3$, 5 $cm^3$, 10 $cm^3$ 볼륨이 받는 선량을 비교분석 하였고, 장기의 평균볼륨, 최대볼륨, 최소볼륨을 비교하였다. 방광의 OOWC의 묘사방법에 따른 평균볼륨 202 $cm^3$이며, 최대볼륨은 457 $cm^3$, 최저볼륨은 90 $cm^3$를 나타내고 있으며, OWC의 묘사방법에서 평균볼륨은 35 $cm^3$, 최대볼륨은 66 $cm^3$, 최소볼륨은 20 $cm^3$의 결과를 나타내고 있으며, 방광의 OOWC와 OWC 볼륨에 대한 선량비율(organ outer dose/organ wall dose)은 0.1 $cm^3$에서는 $1.00{\pm}0.01$이고, 1 $cm^3$$1.03{\pm}0.03$, 2 $cm^3$$1.07{\pm}0.05$, 5 $cm^3$$1.22{\pm}0.08$, 10 $cm^3$$1.9{\pm}0.23$ 이다. 용적이 증가할수록 차이가 늘어나는 경향이 나타나고 있으며, 2 $cm^3$에서부터 OOWC 묘사방법의 선량과 OWC 묘사방법의 선량 차이가 늘어나는 것을 알 수 있다. 직장에서의 OOWC와 OWC 볼륨의 선량 차이는 0.1 $cm^3$에서는 $1.01{\pm}0.02$이고, 1 $cm^3$$1.03{\pm}0.04$, 2 $cm^3$에서는 $1.11{\pm}0.06$, 5 $cm^3$에서 $1.35{\pm}0.17$, 10 $cm^3$에서 $1.78{\pm}0.25$를 나타내고 있다. 마찬가지로 볼륨이 2 $cm^3$에서부터 OOWC의 묘사방법 선량과 OWC 묘사방법의 선량 차이가 늘어나는 것을 알 수 있다. 본 연구는 자궁경부암 환자의 고선량률 근접치료 시 방광과 직장의 볼륨 2 $cm^3$까지 받는 선량이 묘사방법에 따라 일정한 선량을 보이며 그 이상의 볼륨에서는 선량 차이가 증가 하였다. 따라서 임상적으로 나타나는 합병증인 천공과 출혈의 원인을 유추 할 수 있는 선량은 기존에 사용되는 묘사방법으로는 볼륨 2 $cm^3$까지 결과를 사용해야 될 것이다. 하지만 치료계획장비에 사용되는 OWC의 묘사방법이 기존에 묘사방법에 비해 3배~5배 이상의 시간이 소요가 되므로 치료계획장비의 묘사방법의 개선이 이루어진다면 정확한 선량평가 방법이 될 수 있을 것이다.