• Title/Summary/Keyword: organ doses

Search Result 252, Processing Time 0.025 seconds

Investigation on Individual Variation of Organ Doses for Photon External Exposures: A Monte Carlo Simulation Study

  • Yumi Lee;Ji Won Choi;Lior Braunstein;Choonsik Lee;Yeon Soo Yeom
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.50-64
    • /
    • 2024
  • Background: The reference dose coefficients (DCs) of the International Commission on Radiological Protection (ICRP) have been widely used to estimate organ doses of individuals for risk assessments. This approach has been well accepted because individual anatomy data are usually unavailable, although dosimetric uncertainty exists due to the anatomical difference between the reference phantoms and the individuals. We attempted to quantify the individual variation of organ doses for photon external exposures by calculating and comparing organ DCs for 30 individuals against the ICRP reference DCs. Materials and Methods: We acquired computed tomography images from 30 patients in which eight organs (brain, breasts, liver, lungs, skeleton, skin, stomach, and urinary bladder) were segmented using the ImageJ software to create voxel phantoms. The phantoms were implemented into the Monte Carlo N-Particle 6 (MCNP6) code and then irradiated by broad parallel photon beams (10 keV to 10 MeV) at four directions (antero-posterior, postero-anterior, left-lateral, right-lateral) to calculate organ DCs. Results and Discussion: There was significant variation in organ doses due to the difference in anatomy among the individuals, especially in the kilovoltage region (e.g., <100 keV). For example, the red bone marrow doses at 0.01 MeV varied from 3 to 7 orders of the magnitude depending on the irradiation geometry. In contrast, in the megavoltage region (1-10 MeV), the individual variation of the organ doses was found to be negligibly small (differences <10%). It was also interesting to observe that the organ doses of the ICRP reference phantoms showed good agreement with the mean values of the organ doses among the patients in many cases. Conclusion: The results of this study would be informative to improve insights in individual-specific dosimetry. It should be extended to further studies in terms of many different aspects (e.g., other particles such as neutrons, other exposures such as internal exposures, and a larger number of individuals/patients) in the future.

Organ dose reconstruction for the radiation epidemiological study of Korean radiation workers: The first dose evaluation for the Korean Radiation Worker Study (KRWS)

  • Tae-Eun Kwon;Areum Jeong;Wi-Ho Ha;Dalnim Lee;Songwon Seo;Junik Cho;Euidam Kim;Yoonsun Chung;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.725-733
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences has started a radiation epidemiological study, titled "Korean Radiation Worker Study," to evaluate the health effects of occupational exposure to radiation. As a part of this study, we investigated the methodologies and results of reconstructing organ-specific absorbed doses based on personal dose equivalent, Hp(10), reported from 1984 to 2019 for 20,605 Korean radiation workers. For the organ dose reconstruction, representative exposure scenarios (i.e., radiation energy and exposure geometry) were first determined according to occupational groups, and dose coefficients for converting Hp(10) to organ absorbed doses were then appropriately taken based on the exposure scenarios. Individual annual doses and individual cumulative doses were reconstructed for 27 organs, and the highest values were observed in the thyroid doses (on average 0.77 mGy/y and 10.47 mGy, respectively). Mean values of individual cumulative absorbed doses for the red bone marrow, colon, and lungs were 7.83, 8.78, and 8.43 mSv, respectively. Most of the organ doses were maximum for industrial radiographers, followed by nuclear power plant workers, medical workers, and other facility workers. The organ dose database established in this study will be utilized for organ-specific risk estimation in the Korean Radiation Worker Study.

A Comparative Evaluation of Organ Doses in Infants and toddlers between Axial and Spiral CT Scanning (축방향 CT 스캔과 나선형 CT 스캔에서 영·유아의 장기흡수선량 비교 평가)

  • Kim, Sangtae;Eun, Sungjong;Kim, Sunggil
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • This study presents comparison results between axial and spiral scanning in the head and chest region with 64 MDCT to evaluate organ doses in infants and toddlers, who are more radiosensitive to radiation than adults and rise in the number of CT examinations, during CT scanning. Organ doses were significantly lower in spiral scanning than axial scanning regardless of scanned regions. The average organ dose for the chest scan using pitch of 1.355 was found to be significantly higher(average -12.03%) than for the other two pitch settings(0.525 and 0.988) in the spiral scanning mode compared with the axial one. Organ doses in the spiral scanning mode were lower by average 20.54% than the axial scanning mode. The results of the study that evaluated organ doses with an anthropomorphic phantom will help to demonstrate the result values of Monte Carlo simulations and make a contribution to more accurate evaluations of organ doses in toddlers undergoing a CT examination.

Organ dose conversion coefficients in CT scans for Korean adult males and females

  • Lee, Choonsik;Won, Tristan;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Kim, Kwang Pyo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.681-688
    • /
    • 2022
  • Dose monitoring in CT patients requires accurate dose estimation but most of the CT dose calculation tools are based on Caucasian computational phantoms. We established a library of organ dose conversion coefficients for Korean adults by using four Korean adult male and two female voxel phantoms combined with Monte Carlo simulation techniques. We calculated organ dose conversion coefficients for head, chest, abdomen and pelvis, and chest-abdomen-pelvis scans, and compared the results with the existing data calculated from Caucasian phantoms. We derived representative organ doses for Korean adults using Korean CT dose surveys combined with the dose conversion coefficients. The organ dose conversion coefficients from the Korean adult phantoms were slightly greater than those of the ICRP reference phantoms: up to 13% for the brain doses in head scans and up to 10% for the dose to the small intestine wall in abdominal scans. We derived Korean representative doses to major organs in head, chest, and AP scans using mean CTDIvol values extracted from the Korean nationwide surveys conducted in 2008 and 2017. The Korean-specific organ dose conversion coefficients should be useful to readily estimate organ absorbed doses for Korean adult male and female patients undergoing CT scans.

Estimating Organ Doses from Pediatric Cerebral Computed Tomography Using the WAZA-ARI Web-Based Calculator

  • Etani, Reo;Yoshitake, Takayasu;Kai, Michiaki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Background: The use of computed tomography (CT) device has increased in the past few decades in Japan. Dose optimization is strongly required in pediatric CT examinations, since there is concern that an unreasonably excessive medical radiation exposure might increase the risk of brain cancer and leukemia. To accelerate the process of dose optimization, continual assessment of the dose levels in actual hospitals and medical facilities is necessary. This study presents organ dose estimation using pediatric cerebral CT scans in the Kyushu region, Japan in 2012 and the web-based calculator, WAZA-ARI (https://waza-ari.nirs.qst.go.jp). Materials and Methods: We collected actual patient information and CT scan parameters from hospitals and medical facilities with more than 200 beds that perform pediatric CT in the Kyushu region, Japan through a questionnaire survey. To estimate the actual organ dose (brain dose, bone marrow dose, thyroid dose, lens dose), we divided the pediatric population into five age groups (0, 1, 5, 10, 15) based on body size, and inputted CT scan parameters into WAZA-ARI. Results and Discussion: Organ doses for each age group were obtained using WAZA-ARI. The brain dose, thyroid dose, and lens dose were the highest in the Age 0 group among the age groups, and the bone marrow and thyroid doses tended to decrease with increasing age groups. All organ doses showed differences among facilities, and this tendency was remarkable in the young group, especially in the Age 0 group. This study confirmed a difference of more than 10-fold in organ doses depending on the facility and CT scan parameters, even when the same CT device was used in the same age group. Conclusion: This study indicated that organ doses varied widely by age group, and also suggested that CT scan parameters are not optimized for children in some hospitals and medical facilities.

Assessment of Maternal Organs and Fetal Doses in Pregnant Female Nuclear Medicine Practitioners Using the Monte Carlo Method (몬테카를로 방법을 이용한 임신한 여성 핵의학 종사자의 모체 장기 및 태아선량 평가)

  • Cho, Yong-In
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.331-339
    • /
    • 2022
  • The purpose of this study was to evaluate maternal organ and fetal doses by week of pregnancy for pregnant women nuclear medicine practitioners in the nuclear medicine field. In addition, we intend to present basic data for the management of exposure doses of female nuclear medicine practitioners. In this study, phantoms of childbearing women, 3, 6, 9 months pregnant women were simulated using MCNPX(Monte Carlo N-Particle Extended) among the Monte Carlo methods. First, volume source was constructed based on 10 cm of the anterior part of the lower abdomen of the phantom, and the organ and fetal doses were evaluated for each week of the pregnant woman according to the type of radioactive isotope. Second, the organ and fetal dose of pregnant women were evaluated by increasing the distance between the source and the abdominal surface by 50 and 100 cm. As a result, 18F sources showed high organ and fetal doses in pregnant women 0 to 3 months, and the dose distribution gradually decreased in 6 to 9 months pregnant women. The distribution of organ and fetal doses for 99mTc and 123I sources showed the same tendency as that of 18F, and the overall absorbed dose distribution was relatively lower than that of 18F. Through this study, it is considered that workers in the early stages of pregnancy within 3 months will need appropriate management to minimize occupational exposure dose.

Dose estimation of cone-beam computed tomography in children using personal computer-based Monte Carlo software (PCXMC 소프트웨어를 이용한 소아에서의 CBCT 환자선량 평가)

  • Kim, Eun-Kyung
    • The Journal of the Korean dental association
    • /
    • v.58 no.7
    • /
    • pp.388-397
    • /
    • 2020
  • Objective: The purpose of the study was to calculate the effective and absorbed organ doses of cone-beam computed tomography (CBCT) in pediatric patient using personal computer-based Monte Carlo (PCXMC) software and to compare them with those measured using thermoluminescent dosimeters (TLDs) and anthropomorphic phantom. Materials and Methods: Alphard VEGA CBCT scanner was used for this study. A large field of view (FOV) (20.0 cm × 17.9 cm) was selected because it is a commonly used FOV for orthodontic analyses in pediatric patients. Ionization chamber of dose-area product (DAP) meter was located at the tube side of CBCT scanner. With the clinical exposure settings for a 10-year-old patient, DAP value was measured at the scout and main projection of CBCT. Effective and absorbed organ doses of CBCT at scout and main projection were calculated using PCXMC and PCXMCRotation software respectively. Effective dose and absorbed organ doses were compared with those obtained by TLDs and a 10-year-old child anthropomorphic phantom at the same exposure settings. Results: The effective dose of CBCT calculated by PCXMC software was 292.6 μSv, and that measured using TLD and anthropomorphic phantom was 292.5 μSv. The absorbed doses at the organs largely contributing to effective dose showed the small differences between two methods within the range from -18% to 20%. Conclusion: PCXMC software might be used as an alternative to the TLD measurement method for the effective and absorbed organ dose estimation in CBCT of large FOV in pediatric patients.

  • PDF

Dose Estimation of Patient by X-ray Positioning in Particle Cancer Therapy

  • Hirai, Masaaki;Nishizawa, Kanae;Shibayama, Kouichi;Kanai, Tatsuaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.206-207
    • /
    • 2002
  • The effective dose due to the X-Ray radiography in the patient positioning for the heavy ion radiotherapy was measured on three regions, chest, upper-abdomen and pelvis. All the radiographic systems and the conditions used in the measurements were same as the clinical trial being performed in National Institute of Radiological Sciences, Japan. The organ or tissue for measurements was selected by following ICRP60$^1$ and the effective dose was calculated from measured organ doses and the surface dose.

  • PDF

Bias-corrected Hp(10)-to-Organ-Absorbed Dose Conversion Coefficients for the Epidemiological Study of Korean Radiation Workers

  • Jeong, Areum;Kwon, Tae-Eun;Lee, Wonho;Park, Sunhoo
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.158-166
    • /
    • 2022
  • Background: The effects of radiation on the health of radiation workers who are constantly susceptible to occupational exposure must be assessed based on an accurate and reliable reconstruction of organ-absorbed doses that can be calculated using personal dosimeter readings measured as Hp(10) and dose conversion coefficients. However, the data used in the dose reconstruction contain significant biases arising from the lack of reality and could result in an inaccurate measure of organ-absorbed doses. Therefore, this study quantified the biases involved in organ dose reconstruction and calculated the bias-corrected Hp(10)-to-organ-absorbed dose coefficients for the use in epidemiological studies of Korean radiation workers. Materials and Methods: Two major biases were considered: (a) the bias in Hp(10) arising from the difference between the dosimeter calibration geometry and the actual exposure geometry, and (b) the bias in air kerma-to-Hp(10) conversion coefficients resulting from geometric differences between the human body and slab phantom. The biases were quantified by implementing personal dosimeters on the slab and human phantoms coupled with a Monte Carlo method and considered to calculate the bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients. Results and Discussion: The bias in Hp(10) was significant for large incident angles and low energies (e.g., 0.32 for right lateral at 218 keV), whereas the bias in dose coefficients was significant for the posteroanterior (PA) geometry only (e.g., 0.79 at 218 keV). The bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients derived in this study were up to 3.09- fold greater than those from the International Commission on Radiological Protection publications without considering the biases. Conclusion: The obtained results will aid future studies in assessing the health effects of occupational exposure of Korean radiation workers. The bias-corrected dose coefficients of this study can be used to calculate organ doses for Korean radiation workers based on personal dose records.

Bladder And Rectum Dose Define 3D Treatment Planning for Cervix Cancer Brachtherapy Comparison of Dose-Volume Histograms for Organ Contour and Organ Wall Contour (자궁경부암의 고선량률 근접치료시 장기묘사 방법에 따른 직장과 방광의 선량비교 분석)

  • Kim, Jong-Won;Kim, Dae-Hyun;Choi, Joon-Yong;Won, Yeong-Jin
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.327-333
    • /
    • 2012
  • Purpose: To analyze the correlation between dose volume histograms(DVH) based on organ outer wall contour and organ wall delineation for bladder and rectum, and to compare the doses to these organs with the absorbed doses at the bladder and rectum. Material and methods: Individual CT based brachytherapy treatment planning was performed in 13 patients with cervical cancer as part of a prospective comparative trial. The external contours and the organ walls were delineated for the bladder and rectum in order to compute the corresponding dose volume histograms. The minimum dose in 0.1 $cm^3$, 1 $cm^3$, 2 $cm^3$, 5 $cm^3$, 10 $cm^3$ volumes receiving the highest dose were compared with the absorbed dose at the rectum and bladder reference point. Results: The bladder and rectal doses derived from organ outer wall contour and computed for volumes of 2 $cm^3$, provided a good estimate for the doses computed for the organ wall contour only. This correspondence was no longer true when large volumes were considered. Conclusion: For clinical applications, when volumes smaller than 5 $cm^2$ are considered, the dose-volume histograms computed from external organ contours for the bladder and rectum can be used instead of dose -volume histograms computed for the organ walls only. External organ contours are indeed easier to obtain. The dose at the ICRU rectum reference point provides a good estimate of the rectal dose computed for volumes smaller than 2 $cm^2$ only for a midline position of the rectum. The ICRU bladder reference point provides a good estimate of the dose computed for the bladder wall only in cases of appropriate balloon position.