• Title/Summary/Keyword: ordinary Portland cement

Search Result 607, Processing Time 0.025 seconds

Estimation on the Sulfate Ion Diffusivity in Concrete by Accelerated Test (촉진시험에 의한 콘크리트중의 황산이온 확산계수 추정)

  • 문한영;김성수;김홍삼;이승태;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.425-428
    • /
    • 2000
  • When concrete structures are exposed to sulfate or marin environments, sulfate ions penetrated into concrete make it deteriorate. An accelerated test under potential difference method was performed to evaluate not only the sulfate ion diffusivity in ordinary portland cement and ground granulated blast-furnace slag cement concretes but the effect of slag replacement and water-cement ratio on the sulfate ions diffusivity. As the result of this study, we assumed the sulfate ion diffusivity was significantly related with total passed charge and initial current in concrete. Moreover sulfate ions penetration resistance of ordinary portland cement concrete was superior to that of ground granulated blast-furnace slag cement concrete.

  • PDF

Efflorescence Test Evaluation of Concrete Brick and Hollow Concrete Block Products (콘크리트 벽돌 및 속 빈 콘크리트 블록 제품의 백화시험 평가)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Kim, Young-Sun;Jeon, Hyun-Soo;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.207-208
    • /
    • 2023
  • Concrete bricks and hollow concrete block products manufactured using ordinary portland cement react with salt and carbon dioxide absorbed from the soil and atmosphere in the use environment, causing contamination such as efflorescence. This is due to the reaction between calcium hydroxide, a cement hydration product, and carbon dioxide, producing and eluting calcium carbonate. This study was a preliminary study to compare and evaluate the reduction of efflorescence in concrete bricks and hollow concrete block products manufactured using carbon dioxide reaction hardening cement. The purpose was to evaluate the efflorescence occurrence in products using ordinary Portland cement.

  • PDF

Physical and Mechanical Properties of Cements for Borehole and Stability Analysis of Cement Sheath (관정 시멘팅 재료의 물리역학물성 및 시멘트층의 안정성 분석)

  • Kim, Kideok;Lee, Hikweon;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • We carried out laboratory material tests on two cements (KS-1 ordinary Portland and Class G) with changing W/S (Water/Solid) and the content of fly ash in order to evaluate their physical and mechanical properties. The specimens of KS-1 ordinary Portland cement were prepared with varying W/S (Solid=cement) in weight, while those of Class G cement were prepared with changing the content of fly ash in volume but maintaining W/S (Solid=cement+fly ash). The results of the material tests show that as the W/S in KS-1 ordinary Portland cement and the content of fly ash in Class G cement increase, the properties (density, sonic wave velocity, elastic constants, compressive and tensile strengths, thermal conductivity) decrease, but porosity and specific heat increase. In addition, an increase in confining pressure and in the content of fly ash leads to plastic failure behavior of the cements. The laboratory data were then used in a stability analysis of cement sheath for which an analytical solution for computing the stress distribution induced around a cased, cemented well was employed. The analysis was carried out with varying the injection well parameters such as thickness of casing and cement, injection pressure, dip and dip direction of injection well, and depth of injection well. The analysis results show that cement sheath is stable in the cases of relatively lower injection pressures and inclined and horizontal wells. However, in the other cases, it is damaged by mainly tensile failure.

Resistance of Alkali Activated Slag Cement Mortar to Sulfuric Acid Attack (알칼리 활성화 슬래그 시멘트 모르타르의 내황산성)

  • Min, Kyung-San;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.633-638
    • /
    • 2007
  • The setting time of alkali activated slag cement tends to be much faster than ordinary Portland cement, and its compressive strength had been higher from the 1 day but became lower than that of the cement on the 28 days. According to the results of the surface observation, weight loss, compressed strength, and erosion depth tests on the sulphuric acid solution. It has been drawn that alkali activated slag cement has a higher sulphate resistance than ordinary Portland cement, and in particular, the alkali activated slag cement added 5 wt% alumina cement has little deterioration on the sulphuric acid solution. The reason why the alkali activated slag cement has higher sulphate resistance than other hardened cement pastes is that it has no $Ca(OH)_2$ reactive to sulphate ion, and there is little $CaSO_4{\cdot}2H_2O$ production causing volume expansion, unlike other pastes. And it is supposed that $Al(OH)_3$ hydrates with high sulphate resistance, which is produced by adding the alumina cement increases the sulfate resistance.

Prediction of the Compressive Strength of High Flowing Concrete by Maturity (적산온도에 의한 고유동콘크리트의 압축강도 예측)

  • 길배수;한장현;김규용;권영진;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.281-286
    • /
    • 1998
  • The aim of this study is to compare the development of compressive strength of high-Flowing concrete with maturity and to investigate the applicability of strength prediction models of concrete. An experiment was attempted on the high-flowing concrete mixes using Ordinary portland cement, High belite cement, Blast furance slage cement and replaced Fly-ash of 30% by weight of Ordinary portland cement, the water-binder ratios of mixes being 0.35 and the curing temperatures being 30, 20, 10, 5$^{\circ}C$. Test results of mixes are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of high-flowing concrete.

  • PDF

Manufacture and Applicasion of High-Early Strength Latex-Modified Concrete to Resurface and Repair Bridge Decks (조강형 Latex Modified Concrete를 이용한 교량상판면 보수용 Overlay Concrete 제조 및 적용에 관한 연구)

  • 엄태선;임채용;백상현;이승재;조윤호;엄주용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.485-490
    • /
    • 2000
  • Because of occuring easily the crack, debond, lutting on asphalts pavement of bredge decks under traffic's heavy weigt load. We investigated the application of latex modified concrete to resurface and repaire bridge decks for preventing the above problems. Here, Using the ordinary portland cement and high early cement, We rested mix design, workability, compressive strength, adhesive power, drying shrinkage, carbonation, and economic estimation etc. We selected the condition of application to resurface and repaire bridge decks and detected high early cement is superior to ordinary portland cement in results of analyzing the application of the repairing bridge decks and economic estimations.

  • PDF

Properties of High Strength Concrete Incorporating Fine Blast Furnace Slag (고로 슬래그 미분말을 사용한 고강도 콘크리트의 특성)

  • Lee, Bong-Hak;Lee, Joo-Hyung;Hong, Chang-Woo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.59-67
    • /
    • 1998
  • The object of this study is to investigate the strength characteristics and the freeze-thaw resistance of high strength concrete incorporating fine blast furnace slag. Major experimental variables were the water/cement ratio, maximum size of coarse aggregate, and cement types such as ordinary portland and slag cement. The results were as follows ; The workability of fresh concrete incorporating fine blast furnace slag was better than that of OPC(ordinary Portland cement) in terms of slump. The freeze-thaw resistance showed better than that of OPC, keeping more than 90% of relative modules of elasticity after 506 cycles and showing only a hair crack at surface without serious damage. Thus, the fine blast furnace slag might be recycled at concrete to make high strength concrete at fields.

  • PDF

Investigation of adding cement kiln dust (CKD) in ordinary and lightweight concrete

  • Shoaei, Parham;Zolfaghary, Sina;Jafari, Navid;Dehestani, Mehdi;Hejazi, Manouchehr
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.101-115
    • /
    • 2017
  • Cement kiln dust (CKD) is one of the most important waste materials in the cement industry. The large amount of this material, has encouraged researchers to propose new ways to recycle and reuse it. In this paper, effects of adding cement kiln dust to the ordinary Portland cement, on the physical and mechanical properties of ordinary and lightweight concrete were investigated. Results showed that concrete containing CKD, presents lower workability and modulus of elasticity; however, improvements in strength was observed by adding particular amounts of CKD. Eventually, it was found that adding 10% of cement weight CKD is the appropriate percentage for utilizing in manufacturing ordinary and lightweight concrete.

Thermal Crack Control of SRC Pier Using Low-Heat Portland Cement (저열 포틀랜드 시멘트 적용을 통한 SRC 교각 온도균열 제어)

  • 김태홍;하재담;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.297-302
    • /
    • 2001
  • SRC pier at KTE 6-1 construction area is a very important structure. Precise control of quality is needed. This pier has 3.50m$\times$3.73m section and 38.20m length. So this structure must be treated as mass concrete and thermal crack caused by hydration heat should be controled. In this project belite cement concrete is used to control the thermal crack. As a result of adapting belite cement concrete perfect control is achieved. Finally, hydration heat FEM analysis of horizontal element is executed for Ordinary Portland Cement concrete and belite cement concrete. In comparison of two results, it is confirmed that using low heat portland cement concrete is necessary.

  • PDF

Chloride binding isotherms of various cements basing on binding capacity of hydrates

  • Tran, Van Mien;Nawa, Toyoharu;Stitmannaithum, Boonchai
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.695-707
    • /
    • 2014
  • This study investigated the chloride binding isotherms of various cement types, especially the contributions of C-S-H and AFm hydrates to the chloride binding isotherms were determined. Ordinary Portland cement (OPC), Modified cement (MC), Rapid-hardening Portland cement (RHC) and Low-heat Portland cement (LHC) were used. The total chloride contents and free chloride contents were analyzed by ASTM. The contents of C-S-H, AFm hydrates and Friedel's salt were determined by X-ray diffraction Rietveld (XRD Rietveld) analysis. The results showed that OPC had the highest chloride binding capacity, and, LHC had the lowest binding capacity of chloride ions. MC and RHC had very similar capacities to bind chloride ions. Experimental equations which distinguish the chemically bound chloride and physically bound chloride were formulated to determine amounts of the bound chloride basing on chloride binding capacity of hydrates.