• Title/Summary/Keyword: ordered structure

Search Result 385, Processing Time 0.023 seconds

Preparation, Structural and Magnetic Properties of Ordered Perovskite (BaLa)(MgMo)O$_6$

  • Choy Jin-Ho;Hong Seung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.8-12
    • /
    • 1989
  • The polycrystalline powder of (BaLa)(MgMo)$O_6$ has been prepared at $1350^{\circ}C$ in a nitrogen flowing atmosphere. The powder X-ray diffraction pattern indicates that (BaLa)(MgMo)$O_6$ has a cubic perovskite structure ($a_0$ = 8.019(3) $\AA)$ with 1:1 ordering or $Mg^{2+}$ and $Mo^{5+}$ in the oxide lattice. The infrared spectrum shows two strong absorption bands with their maxima at 600(${\nu}3$) and 365(${\nu}4$) cm-1, which are attributed to $2T_{1U}$, modes of molybdenum octahedra MoO6 in the crystal lattice. According to the magnetic susceptibility measurement, the compound shows a paramagnetic behavior which follows the Curie-Weiss law below room temperature with the effective magnetic moment 1.60(1){$\mu}B$, which is consistent with that of spin only value ($1.73{\mu}B$) for $Mo^{5+}$ ($4d^1$ electronic configuration). From the thermogravimetric and X-ray diffraction analyses, it has been found that (BaLa)(MgMo)$O_6$ decomposes gradually into $BaMoO_4$, $MoO_3$ and unidentified phases above $900^{\circ}C$ in an ambient atmosphere, absorbing about 0.25 mole $O_2$ per mole of Mo ion, which also supports that oxidation state of $Mo^{5+}$ in the (BaLa)(MgMo)$O_6$.

A New Model for the Reduced Form of Purple Acid Phosphatase: Structure and Properties of $[Fe_2BPLMP(OAc)_2](BPh_4)_2$

  • 임선화;이진호;이강봉;강성주;허남휘;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.654-660
    • /
    • 1998
  • $[Fe^{II}Fe^{III}BPLMP(OAc)_2](BPh_4)_2$ (1), a new model for the reduced form of the purple acid phosphatases, has been synthesized by using a dinucleating ligand, 2,6-bis[((2-pyridylmethyl)(6-methyl-2-pyridylmethyl)amino) methyl]-4-methylphenol (HBPLMP). Complex I has been characterized by X-ray diffraction method as having (μ-phenoxo)bis(acetato)diiron core. Complex 1 was crystallized in the monoclinic space group C2/c with the following cell parameters: a=41.620(6) Å, b=14.020(3) Å, c=27.007(4) Å, β=90.60(2)°, and Z=8. The iron centers in the complex 1 are ordered as indicated by the difference in the Fe-O bond lengths which match well with typical $Fe^{III}-O\; and\; Fe^{II}-O$ bond lengths. Complex 1 has been studied by electronic spectral, NMR, EPR, SQUID, and electochemical methods. Complex 1 exhibits strong bands at 592 nm, 1380 nm in $CH_3CN$ (ε = 1.0 × 103 , 3.0 × 102). These are assigned to $phenolate-to-Fe^{III}$ and intervalence charge-transfer transitions, respectively. Its NMR spectrum exhibits sharp isotropically shifted resonances, which number half of those expected for a valence-trapped species, indicating that electron transfer between $Fe^{II}\;and\;Fe^{III}$ centers is faster than NMR time scale. This complex undergoes quasireversible one-electron redox processes. The $Fe^{III}_2/Fe^{II}Fe^{III}\;and\;Fe^{II}Fe^{III}/Fe^{II}_2$ redox couples are at 0.655 and -0.085 V vs SCE, respectively. It has $K_{comp}=3.3{\times}10^{12}$ representing that BPLMP/bis(acetate) ligand combination stabilizes a mixed-valence $Fe^{II}Fe^{III}$ complex in the air. Complex 1 exhibits a broad EPR signal centered near g=1.55 which is a characteristic feature of the antiferromagnetically coupled high-spin $Fe^{II}Fe^{III}$ system $(S_{total}=1/2)$. This is consistent with the magnetic susceptibility study showing the weak antiferromagnetic coupling $(J= - 4.6\;cm^{-1},\; H= - 2JS_1{\cdot}S2)$ between $Fe^{II}\; and \;Fe^{III}$center.

Preparation and Characterization of Ordered Perovskite (CaLa) (MgMo) $_6$

  • Choy, Jin-Ho;Hong, Seung-Tae;Suh, Hyeong-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.345-349
    • /
    • 1988
  • The polycrystalline powder of (CaLa) (MgMo)$O_6$ has been prepared at $1350^{\circ}C$ in $H_2/H_2O$ and $N_2$ flowing atmosphere. The powder X-ray diffraction pattern indicates that (CaLa) (MgMo)$O_6$ has a monoclinic perovskite structure with the lattice constants $a_0=b_0=7.901(1){\AA}$, $c =7.875(1){\AA}\;and\;{\gamma}=89^{\circ}$16'(1'), which can be reduced to orthorhombic unit cell, a = 5.551(1) ${\AA}$, b = 5.622(1) ${\AA}$ and c = 7.875(1) ${\AA}$. The infrared spectrum shows two strong absorption bands with their maxima at 590($ν_3$) and 380($ν_4$) cm, which are attributed to $2T_{1u}$ modes indicating the existence of highly charged molybdenum octahedron $MoO_6$ in the crystal lattice. According to the magnetic susceptibility measurement, the compound follows the Curie-Weiss law below room temperature with the effective magnetic moment 1.83(1)$_{{\mu}B}$, which is well consistent with that of spin only value (1.73 $_{\mu}_B$) for $Mo^{5+}$ with $4d^1$-electronic configuration within the limit of experimental error. From the thermogravimetric analysis, it has been confirmed that (CaLa) (MgMo)$O_6$ decomposes gradually into $CaMoO_4,\;MoO_3,\;MgO,\;La_2O_3$ and unidentified phases due to the oxidation of $Mo^{5+}$ to $Mo^{6+}$.

Hydrophobic Organic/Inorganic Composite Films with 3D Hierarchical Nanostructured Surfaces (3D 계층적 나노구조화된 표면을 갖는 소수성 유/무기 복합 필름)

  • Seo, Huijin;Ahn, Jinseong;Park, Junyong
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.264-268
    • /
    • 2021
  • In this study, we propose a method for fabricating hydrophobic coatings/films with three-dimensional (3D) hierarchical nanostructured organic/inorganic composite surfaces. An epoxy-based, large-area 3D ordered nanoporous template is first prepared through an advanced photolithography technique called Proximity-field nanoPatterning (PnP). Then, a hierarchically structured surface is generated by densely impregnating the template with silica nanoparticles with an average diameter of 22 nm through dip coating. Due to the coexisting micro- and nano-scale roughness on the surface, the fabricated composite film exhibits a higher contact angle (>137 degrees) for water droplets compared to the reference samples. Therefore, it is expected that the materials and processes developed through this study can be used in various ways in the traditional coating/film field.

Measurement of Tensile and Bending Properties of Nanohoneycomb Structures (나노허니컴 구조물의 인장 및 굽힘 물성 측정)

  • Jeon, Ji-Hoon;Choi, Duk-Hyun;Lee, Pyung-Soo;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.23-31
    • /
    • 2006
  • We measured mechanical properties, including Young's modulus, effective bending modulus and nominal fracture strength of nanohoneycomb structures using an Atomic Force Microscope(AFM) and a Nano-Universal Testing Machine(UTM). Anodic aluminum oxide(AAO) films are well suited as nanohoneycomb structures because of the simple fabrication process, high aspect ratio, self-ordered hexagonal pore structure, and simple control of pore dimensions. Bending tests were carried out for cantilever structures by pressing AFM tips, and the results were compared with three-point bending tests and tensile tests using a Nano-UTM. One side of the AAO films is clogged by harrier layers, and looks like a face material of conventional sandwich structures. Analysis of this layer showed that it did not influence the bending rigidity, and was just a crack tip. The present results can act as a design guideline in applications of nanohoneycomb structures.

X-ray Analys is of the Thermotropic Liquid Crystalline Copolyester Poly(1 -phenylethylpphenylene-tere phthalate) (열방성 액정폴리에스터Poly(1-phenylethyl.p-phenyleneterephthalate)의 X-선 결정구조해석)

  • 홍성권
    • Korean Journal of Crystallography
    • /
    • v.2 no.2
    • /
    • pp.13-21
    • /
    • 1991
  • X-ray methods have been used to determine the chain conformation and packing of the thermotropic liquid crystalline copolyester prepared from 50% tarephthaloyl chloride(TPA) and 50% (1-phenylethyl) hydroquinone(PEHQ). The x-ray patterns of annealed melt-spun fibers contain a series of annealed melt-Pointing to a well ordered crystalline structure, despite the random sense(2 or 3-) of the 1-phenylethyl substiuttion on the TPA-hydroquinone backbone. The crystalline fiber is monoclinic with space group P2l and the unit cell has dimensions 11=12.77 A, b=10.17 A (upique axis), c=12.58 h (fiber axis). and β=90.1° and contains TPA-PEHO units of to or chains. The random substitution of 1-phenylethyl groups was modelled by placing these groups at both the 2and 3 positions and giving each a weight of one-hal(. T he structure has been refined by linked a rom least square methods(LALS) against 16 observed and 21 unobserved reflections. and had a final R value of 0.20. Packing of the side chains is effected by staggering adjacent chains along the b axis by approximately c/2, so that the side chains are interleaved. The phenyl-COO and COO-phenyl torsion angles are -6.1 and 65.6, respectively, such that the main chain phenyls are mutually inclined at 59.5 (the ester groups are assumed to be planar). These torsion angles compare very well with those for the model compounds, notably phenylbenzoate, and can be used in future analyses of the structures of more complex random sequence copolyesters.

  • PDF

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF

Structural and Microwave Dielectric Properties of $La(Mg_{1/2}Ti_{1/2})O_3$ Ceramics ($La(Mg_{1/2}Ti_{1/2})O_3$ 세라믹스의 구조 및 고주파 유전 특성 연구)

  • Yeo, Jae-Hyun;Baek, Jong-Hu;Nham, Sahn;Lee, Hwack-Joo;Park, Hyun-Min;Byun, Jae-Dong
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.943-947
    • /
    • 1999
  • The crystal structure and the microwave dielectric properties of $La(Mg_{1/2}Ti_{1/2})O_3$ ceramics have been investigated. $La(Mg_{1/2}Ti_{1/2})O_3$ has the 1:1 ordered monoclinic structure with the lattice parameters of $a = 5.5467(3){\AA}, b = 5.5616(3){\AA}, c = 7.8426(5) {\AA} and \beta = 89.9589 (2)^{\circ}$ The spacegroup of LMT is $P2_1/n$. Monoclinic LMT has the in­phase and anti-phase tilting of octahedra with the $a^_a^_c^_$ tilting system. Anti-parallel shift of A-site cations was also found in LMT. The relative density of the specimens sintered above $1600^{\circ}C$ was ranged between 95 % and 96 % of the theoretical density and the dielectric constant of specimens was about 28. The highest $Q\timesf$ achieved in this investigation was 63,100 for the specimen sintered at $1630^{\circ}C$ for 5 hr. Temperature coefficient of resonance frequency ranged from $>-74 ppm/^{\circ}C ~ -79 ppm/^{\circ}C$.

  • PDF

Investigation on Formation of Nanotube Titanium Oxide Film by Anodizing on Titanium in NaF Electrolytes (NaF 전해용액을 이용한 양극산화에 의한 타이타늄 표면의 나노튜브구조의 형성에 관한 연구)

  • Lim, Hyun-Pil;Park, Nam-Soon;Park, Sang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.183-190
    • /
    • 2009
  • The aim of this study is to find the condition of forming the favorable nanotubes by anodizing with NaF and $H_3PO_4$. Machined Ti discs were used for anode, and Platinum net was used for cathode. For electrolyte, $H_3PO_4$ and NaF solution were mixed. We controlled voltage, electrolyte concentration, anodizing time and formed nanotubes on Ti discs. After that, these were washed with distilled water for 24 hours and dried in the $40^{\circ}C$ oven for 24 hours. The surface structure of specimens were analyzed. The results were as follows : At 0.5 wt % NaF, according as increasing voltage and anodizing time, early state of nucleating pores were generated. At 1.0 wt % NaF, 20 V, 20 & 25 min, well-formed nanotubes were observed. At 1.0 wt % NaF, 30 V, structure of nanotube became bigger and interconnected. At 2.0 wt % NaF, no nanotubes were formed and it was unrelated with voltage and time. At 1.0 wt % NaF, 20 V, 20 - 25 min, well-ordered nanotubes were generated on Ti discs. For the formation of favorable nanotubes, it is considered that proper parameters such as electrolyte concentration, voltage, anodizing time are necessary according to the kind of electrolytes.

Differences in the Electronic Structures of Bulk and Powder FeV2O4 Spinel Oxide Investigated by Using Synchrotron Radiation (방사광을 이용한 FeV2O4 스피넬 산화물의 덩치상태와 분말상태의 전자구조 차이 연구)

  • Hwang, Ji-Hoon;Kim, D.H.;Lee, Eun-Sook;Kang, J.S.;Kim, W.C.;Kim, C.S.;Han, S.W.;Hong, S.C.;Park, B.G.;Kim, J.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.198-203
    • /
    • 2011
  • The electronic structure of ferrimagnetic spinel oxide of $FeV_2O_4$ has been investigated by employing soft x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD). The Fe 2p and V 2p XAS spectra show that the valence states of Fe and V ions are ${\sim}Fe^{2.3+}$ mixed-valent states and ${\sim}V^{3+}$ states, respectively. In Fe 2p XMCD spectra, finite XMCD signals are observed for divalent $Fe^{2+}$ states only, but not for $Fe^{3+}$ states. This finding indicates that the magnetic moments of $Fe^{2+}$ ions are ordered ferromagnetically but that those of $Fe^{3+}$ ions are cancelled, implying that $Fe^{2+}$ ions play an important role in determining magnetic properties of $FeV_2O_4$.