DOI QR코드

DOI QR Code

Hydrophobic Organic/Inorganic Composite Films with 3D Hierarchical Nanostructured Surfaces

3D 계층적 나노구조화된 표면을 갖는 소수성 유/무기 복합 필름

  • Seo, Huijin (Department of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Ahn, Jinseong (Department of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Park, Junyong (Department of Materials Science and Engineering, Kumoh National Institute of Technology)
  • Received : 2021.08.20
  • Accepted : 2021.08.27
  • Published : 2021.09.03

Abstract

In this study, we propose a method for fabricating hydrophobic coatings/films with three-dimensional (3D) hierarchical nanostructured organic/inorganic composite surfaces. An epoxy-based, large-area 3D ordered nanoporous template is first prepared through an advanced photolithography technique called Proximity-field nanoPatterning (PnP). Then, a hierarchically structured surface is generated by densely impregnating the template with silica nanoparticles with an average diameter of 22 nm through dip coating. Due to the coexisting micro- and nano-scale roughness on the surface, the fabricated composite film exhibits a higher contact angle (>137 degrees) for water droplets compared to the reference samples. Therefore, it is expected that the materials and processes developed through this study can be used in various ways in the traditional coating/film field.

이 연구에서 우리는 3차원 계층적 나노구조화된 유/무기 복합 표면을 가진 소수성 코팅/필름을 제조하는 방법을 제안한다. 먼저 근접장 나노패터닝(PnP)이라 불리는 첨단 포토리소그래피 기술을 통해 에폭시 기반의 대면적 3차원 정렬 나노다공성 템플릿을 준비하였다. 이후, 딥 코팅을 통해 평균 직경이 22 nm인 실리카 나노입자를 템플릿에 조밀하게 함침시켜 계층적 구조화된 표면을 구현하였다. 표면에 공존하는 마이크로 및 나노 스케일 거칠기로 인해, 제조된 복합 필름은 대조군에 비해 물에 대한 높은 접촉각(>137도)을 나타내었다. 따라서 본 연구를 통해 개발된 소재 및 공정은 전통적인 코팅/필름 분야에서 다양하게 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2020R1F1A1076074). 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2021R1C1C1014473). 본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(1615012070).

References

  1. Giljean, S., Bigerelle, M., Anselme, K., and Haidara, H., "New Insights on Contact Angle/Roughness Dependence on High Surface Energy Materials," Applied Surface Science, Vol. 257, No. 22, 2011, pp. 9631-9638. https://doi.org/10.1016/j.apsusc.2011.06.088
  2. Cho, D.L., Ha, J.-R., Kim, B.S., and Yi, J.W., "The Effect of Surface-Modification of Wood Powders by Plasma Treatment of Propylene on the Mechanical Properties of Wood Powder/PP Composites," Composites Research, Vol. 30, No. 2, 2017, pp. 145-148. https://doi.org/10.7234/composres.2017.30.2.145
  3. Kim, D., Hwang, W., Park, H.C., and Lee, K.-H., "Superhydrophobic Engineered Surface Based on Nanohoneycomb Structures," Composites Research, Vol. 20, No. 2, 2007, pp. 17-20.
  4. Wen, G., Guo, Z., and Liu, W.M., "Biomimetic Polymeric Superhydrophobic Surfaces and Nanostructures: From Fabrication to Applications," Nanoscale, Vol. 9, No. 10, 2017, pp. 3338-3366. https://doi.org/10.1039/c7nr00096k
  5. Kwon, Y.W., Park, J., Kim, T., Kang, S.H., Kim, H., Shin, J., Jeon, S., and Hong, S.W., "Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Nonplanar Substrates for Biomimetic Hierarchical Photonic Structures," ACS Nano, Vol. 10, No. 4, 2016, pp.4609-4617. https://doi.org/10.1021/acsnano.6b00816
  6. Yoon, Y., Kim, D., and Lee, J.-B., "Hierarchical Micro/Nano Structures for Super-hydrophobic Surfaces and Super-lyophobic Surface Against Liquid Metal," Micro and Nano Systems Letters, Vol. 2, No. 3, 2014, pp. 3. https://doi.org/10.1186/s40486-014-0003-x
  7. Lin, S.Y., Fleming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, M.K., Sigalas, M.M., Zubrzycki, W., Kurtz, S.R., and Bur, J., "A Three-dimensional Photonic Crystal Operating at Infrared Wavelengths," Nature, Vol. 394, No. 6690, 1998, pp. 251-253. https://doi.org/10.1038/28343
  8. Jeon, S., Park, J.-U., Cirelli, R., Yang, S., Heitzman, C.E., Braun, P.V., Kenis, P.J.A., and Rogers, J.A., "Fabricating Complex Three-dimensional Nanostructures with High-resolution Conformable Phase Masks," Proceedings of the National Academy of Sciences of the Unites States of America, Vol. 101, No. 34, 2004, pp. 12428-12433. https://doi.org/10.1073/pnas.0403048101
  9. Ahn, C., Park, J., Cho, D., Hyun, G., Ham, Y., Kim, K., Nam, S.-H., Bae, G., Lee, K., Shim, Y.-S., Ang, J.N.S., and Jeon, S., "High-performance Functional Nanocomposites using 3D Ordered and Continuous Nanostructures Generated from Proximityfield nanoPatterning," Functional Composites and Structures, Vol. 1, No. 3, 2019, pp. 032002. https://doi.org/10.1088/2631-6331/ab3692
  10. Ahn, J., Hong, S., Shim, Y.-S., and Park, J., "Electroplated Functional Materials with 3D Nanostructures Defined by Advanced Optical Lithography and Their Emerging Applications," Applied Sciences, Vol. 10, No. 24, 2020, pp. 8780. https://doi.org/10.3390/app10248780
  11. Ahn, J., Ahn, C., Jeon, S., and Park, J., "Atomic Layer Deposition of Inorganic Thin Films on 3D Polymer Nanonetworks," Applied Sciences, Vol. 9, No. 10, 2019, pp. 1990. https://doi.org/10.3390/app9101990
  12. Park, J., Park, J.H., Kim, E., Ahn, C.W., Jang, H.I., Rogers, J.A., and Jeon, S., "Conformable Solid-Index Phase Masks Composed of High-Aspect-Ratio Micropillar Arrays and Their Application to 3D Nanopatterning," Advanced Materials, Vol. 23, No. 7, 2011, pp. 860-864. https://doi.org/10.1002/adma.201003885
  13. Bong, J., Ahn, C., Lim, T., Park, J.H., Kwak, S.K., Jeon, S., and Ju, S., "Controlled Three-dimensional Interconnected Capillary Structures for Liquid Repellency Engineering," RSC Advances, Vol. 6, No. 66, 2016, pp. 61909-61914. https://doi.org/10.1039/C6RA09654A
  14. Berry, M.V., and Klein, S., "Integer, Fractional and Fractal Talbot Effects," Journal of Modern Optics, Vol. 43, No. 10, 1996, pp. 2139-2164. https://doi.org/10.1080/095003496154761
  15. Ahn, J., Ahn, J., and Park, J., "3D-ordered Porous Composite Microparticles Formed via Substrate-free Optical 3D Lithography," Functional Composites and Structures, Vol. 2, No. 4, 2020, pp. 045007. https://doi.org/10.1088/2631-6331/abd1e7
  16. Hyun, J.K., Park, J., Kim, E., Lauhon, L.J., and Jeon, S., "Rational Control of Diffraction and Interference from Conformal Phase Gratings: Toward High-Resolution 3D Nanopatterning," Advanced Optical Materials, Vol. 2, No. 12, 2014, pp. 1213-1220. https://doi.org/10.1002/adom.201400348
  17. Rinne, J.W., Gupta, S., and Wiltzius, P., "Inverse Design for Phase Mask Lithography," Optics Express, Vol. 16, No. 2, 2008, pp. 663-670. https://doi.org/10.1364/OE.16.000663
  18. Jeon, S., Menard, E., Park, J.-U., Meitl, M.M., Zaumseil, J., and Rogers, J.A., "Three-Dimensional Nanofabrication with Rubber Stamps and Conformable Photomasks," Advanced Materials, Vol. 16, No. 15, 2004, pp. 1369-1373. https://doi.org/10.1002/adma.200400593
  19. Nam, S.-H., Hyun, G., Cho, D., Han, S., Bae, G., Chen, H., Kim, K., Ham, Y., Park, J., and Jeon, S., "Fundamental Principles and Development of Proximity-field Nanopatterning Toward Advanced 3D Nanofabrication," Nano Research, Vol. 14, No. 9, 2021, pp. 2956-2980.
  20. Hong, S., Park, J., Jeon, S.G., Kim, K., Park, S.H., Shin, H.S., Kim, B., Jeon, S., and Song, J.Y., "Monolithic Bi1.5Sb0.5Te3 Ternary Alloys with a Periodic 3D Nanostructure for Enhancing Thermoelectric Performance," Journal of Materials Chemistry C, Vol. 5, No. 35, 2017, pp. 8974-8980. https://doi.org/10.1039/C7TC02717F
  21. Park, J., Kim, K.-I., Kim, K, Kim, D.-C., Cho, D., Lee, J.H., and Jeon, S., "Rapid, High-Resolution 3D Interference Printing of Multilevel Ultralong Nanochannel Arrays for High-Throughput Nanofluidic Transport," Advanced Materials, Vol. 27, No. 48, 2015, pp. 8000-8006. https://doi.org/10.1002/adma.201503746
  22. Cortese, B., D'Amone, S., Manca, M., Viola, I., Cingolani, R., and Gigli, G., "Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces," Langmuir, Vol. 24, No. 6, 2008, pp. 2712-2718. https://doi.org/10.1021/la702764x